收稿日期:
2023-02-01
修回日期:
2023-02-15
接受日期:
2023-03-17
出版日期:
2023-08-15
发布日期:
2023-03-17
通讯作者:
吴建军
E-mail:jjwu@nudt.edu.cn
基金资助:
Yuwei LIU, Yuqiang CHENG, Jianjun WU()
Received:
2023-02-01
Revised:
2023-02-15
Accepted:
2023-03-17
Online:
2023-08-15
Published:
2023-03-17
Contact:
Jianjun WU
E-mail:jjwu@nudt.edu.cn
Supported by:
摘要:
航天推进技术的智能化是研究人员长久以来的梦想与追求,是提高航天活动可靠性、任务适应性的重要途径。随着人工智能技术的发展,智能控制技术已逐步在航天推进系统上展开应用。本文以各国航天智能化的发展情况为根据,聚焦航天推进系统的智能控制方法,对航天推进系统智能控制技术的研究现状和进展进行了综述。首先,总结了航天推进系统中几种典型的智能控制;然后,列举了各航天大国具有代表的控制系统并给出了发展趋势;最后,依据目前的航天推进系统中的智能控制方法,提出了航天推进系统中的智能控制方法的发展趋势,在可能的情况下,提供了一些意见,为从事航天推进系统智能控制方法研究的研究人员提供有用的参考。
中图分类号:
刘育玮, 程玉强, 吴建军. 航天推进系统中的智能控制方法研究进展[J]. 航空学报, 2023, 44(15): 528505-528505.
Yuwei LIU, Yuqiang CHENG, Jianjun WU. Research progress of intelligent control methods in space propulsion systems[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528505-528505.
1 | WANG H N, LIU N, ZHANG Y Y, et al. Deep reinforcement learning: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1726-1744. |
2 | ZHUANG Y T, WU F, CHEN C, et al. Challenges and opportunities: From big data to knowledge in AI 2.0[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14. |
3 | KALUARACHCHI T, REIS A, NANAYAKKARA S. A review of recent deep learning approaches in human-centered machine learning[J]. Sensors (Basel, Switzerland), 2021, 21(7): 2514. |
4 | LU Y. Artificial intelligence: A survey on evolution, models, applications and future trends[J]. Journal of Management Analytics, 2019, 6(1): 1-29. |
5 | 中华人民共和国国务院. 新一代人工智能发展规划[EB/OL]. (2017-07-20)[2023-01-13]. . |
The State Council of the People’s Republic of China. New Generation Artificial Intelligence Development Plan [EB/OL] (2017-07-20)[2023-01-13]. (in Chinese). | |
6 | 袁珩, 耿喆, 徐峰, 等. 美国人工智能战略布局与对外策略[J]. 科技管理研究, 2022, 42(12):34-39. |
YUAN H, GENG Z, XU F, et al. Artificial intelligence strategy layout and foreign strategies of the United States[J]. Science and Technology Management Research, 2022, 42(12):34-39 (in Chinese). | |
7 | 包为民. 航天智能控制技术让运载火箭 “会学习”[J]. 航空学报, 2021, 42(11): 525055. |
BAO W M. Space intelligent control technology enables launch vehicle to “self-learning”[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525055 (in Chinese). | |
8 | 泮斌峰, 张哲, 谭浩声. 美国喷气推进实验室人工智能技术发展现状与分析[J]. 中国航天, 2022(5): 525055. |
PAN B F, ZHANG Z, TAN H S. Development status and analysis of artificial intelligence technology in American jet propulsion laboratory[J]. Aerospace China, 2022(5): 8-14 (in Chinese). | |
9 | О развитии искусственного интеллекта в Российской Федерации[EB/OL] (2019-10-11) [2023-01-13]. . |
The Development of Artificial Intelligence in the Russian Federation. [EB/OL] (2019-10-11) [2023-01-13]. . | |
10 | 李锡宁.俄制定人工智能国家发展战略[EB/OL] (2019-10-28) [2023-01-13].. . |
Li X N. Russia formulates a national development strategy for artificial intelligence [EB/OL] (2019-10-28) [2023-01-13]. . (in Chinese). | |
11 | National Artificial Intelligence Initiative Act of 2020, H.R.6216, 116th Cong. (2020), [EB/OL] (2020-12-3) [2023-01-13] . |
12 | Commission European. 2021. European Union White Paper on Artificial Intelligence: A European Approach to Excellence and Trust. Brussels.[EB/OL] (2020-2-19) [2023-01-13]. . |
13 | Government UK . (2021). National AI Strategy. London [EB/OL] (2022-12-18) [2023-01-13]. . |
14 | Japan Aerospace Exploration Agency. (2017). Space Industry Outlook 2030. Tokyo. [EB/OL] (2017-5-29) [2023-01-13]. . |
15 | Federation Russian. (2019). National Strategy for the Development of Artificial Intelligence Until 2030. Moscow. [EB/OL] (2019-11-19) [2023-01-13] Russia Adopts National Strategy for Development of Artificial Intelligence-Jamestown. |
16 | 中华人民共和国中央人民政府. 2021中国航天[EB/OL]. (2022-01-28) [2023-01-13]. . |
The Central People’s Government of the People’s Republic of China. 2021 China Aerospace [EB/OL] (2022-01-28) [2023-01-13]. (in Chinese). | |
17 | 袁利. 面向不确定环境的航天器智能自主控制技术[J]. 宇航学报, 2021, 42(7):839-849. |
YUAN L. Spacecraft intelligent autonomous control technology toward uncertain environment[J]. Journal of Astronautics, 2021, 42(7):839-849 (in Chinese). | |
18 | 柴金宝, 陈雄, 周景亮, 等. 基于人工蜂群算法优化的燃气发生器 压强自适应模糊免疫PID控制[J]. 推进技术, 2019, 40(2): 441-448. |
CHAI J B, CHEN X, ZHOU J L, et al. Adaptive fuzzy immune PID control for gas generator pressure based on artificial bee colony algorithm optimization[J]. Journal of Propulsion Technology, 2019, 40(2): 441-448 (in Chinese). | |
19 | LEE C C. Intelligent control based on fuzzy logic and neural net theory: AA19126654[R]. Berkeley: University of California, 1991. |
20 | ATHANS M. Advances in control systems: Theory and applications, vol 1[J]. IEEE Transactions on Automatic Control, 1966, 11(3): 633-634. |
21 | MENDEL J M. Application of artificial intelligence techniques to a spacecraft control problem: NASA-CR-55[R]. Washington, D. C.: NASA, 1967. |
22 | FU K. Learning control systems and intelligent control systems: An intersection of artifical intelligence and automatic control[J]. IEEE Transactions on Automatic Control, 1971, 16(1): 70-72. |
23 | WALTZ M, FU K. A heuristic approach to reinforcement learning control systems[J]. IEEE Transactions on Automatic Control, 1965, 10(4): 390-398. |
24 | 德先生. 模式识别拓荒者是一位中国人[EB/OL]. (2018-08-24)[2023-01-13]. . |
Mr. De. Pattern recognition pioneer is a Chinese [EB/OL]. (2018-08-24)[2023-01-13]. (in Chinese). | |
25 | LEE C C. Fuzzy logic in control systems: fuzzy logic controller. Ⅰ[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(2): 404-418. |
26 | LEE C C. Fuzzy logic in control systems: fuzzy logic controller. Ⅱ[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(2): 419-435. |
27 | YASUNOBU S and HASEGAWA G, Evaluation of an automatic container crane operation system based on predictive fuzzy control[J]. Control Theory and Advanced Technology, 1986, 2(3):419-432. |
28 | XIANG X B, YU C Y, LAPIERRE L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2): 572-586. |
29 | FENG G. A survey on analysis and design of model-based fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(5): 676-697. |
30 | KOSHIYAMA A S, ESCOVEDO T, VELLASCO M M B R, et al. GPFIS-control: A fuzzy genetic model for control tasks[C]∥ 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Piscataway: IEEE Press, 2014: 1953-1959. |
31 | MO J. Tools for intelligent control: Fuzzy controllers, neural networks and genetic algorithms[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1809): 1781-1808. |
32 | LÜ X Q, WU Y B, LIAN J, et al. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy Conversion and Management, 2020, 205: 112474. |
33 | FEI J T, CHEN Y, LIU L, et al. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9519-9534. |
34 | FEI J T, WANG Z, LIANG X, et al. Fractional sliding-mode control for microgyroscope based on multilayer recurrent fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(6): 1712-1721. |
35 | LIANG H J, LIU G L, ZHANG H G, et al. Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2239-2250. |
36 | 张立宪, 卢生奥, 韩铭昊, 等. 鲁棒强化学习及其在航天控制中的应用与展望[J]. 航天控制, 2021, 39(3): 3-11. |
ZHANG L X, LU S A, HAN M H, et al. Robust reinforcement learning and its application and prospect in aerospace control[J]. Aerospace Control, 2021, 39(3): 3-11 (in Chinese). | |
37 | PENG Z N, LUO R, HU J P, et al. Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 4043-4055. |
38 | SURRIANI A, WAHYUNGGORO O, CAHYADI A I. Reinforcement learning for cart pole inverted pendulum system[C]∥ 2021 IEEE Industrial Electronics and Applications Conference (IEACon). Piscataway: IEEE Press, 2021: 297-301. |
39 | KLOPF A H, The Hedonistic neuron[M]. Washington, D. C.: Hemisphere, 1982. |
40 | FUKUDA T, KUBOTA N. Intelligent robotic systems: Adaptation, learning, and evolution[J]. Artificial Life and Robotics, 1999, 3(1): 32-38. |
41 | LIN C M. Application of neural network in control problem[C]∥ 2007 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE Press, 2007: 3465-3471. |
42 | SHI L, WANG XING CHENG. The application of neural network in nonlinear system[J]. Advanced Materials Research, 2011, 179-180: 128-134. |
43 | OMIDVAR O, ELLIOTT D L. Neural systems for control[M]. San Diego: Academic Press, 1997. |
44 | SPIELBERG S P K, GOPALUNI R B, LOEWEN P D. Deep reinforcement learning approaches for process control[C]∥ 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP). Piscataway: IEEE Press, 2017: 201-206. |
45 | SUTTON R S, BARTO A G. An introduction[M]. 2rd edition. Cambridge: The MIT Press, 2018. |
46 | BUŞONIU L, DE BRUIN T, TOLIĆ D, et al. Reinforcement learning for control: Performance, stability, and deep approximators[J]. Annual Reviews in Control, 2018, 46: 8-28. |
47 | BERTSEKAS D P. Reinforcement learning and optimal control[M]. Belmont: Athena Scientific, 2018. |
48 | OTTO E W, FLAGE R A, Control of combustion-chamber pressure and oxidant-fuel. ratio for a regeneratively cooled hydrogen-fluorine rocket engine: Technical note D-82[R]. Cleveland: NASA Lewis Research Center, 1959. |
49 | SEITZ P F, SEARLE R F. Space shuttle main engine control system: SAE PAPER 730927[R]. Washington, D.C.: NASA, 1973. |
50 | NEMETH E, ANDERSON R, OLS J, et al. Reusable rocket engine intelligent control system framework design: NASE-CR-187213[R]. Washington, D.C.: NASA, 1991. |
51 | NEMETH E, ANDERSON R, MARAM J, et al. An advanced intelligent control system framework: AIAA 1992-3162[R]. Reston: AIAA, 1992. |
52 | LORENZO C F, Ray A, HOLMES M S, Nonlinear control of a reusable rocket engine for life extension[J], Journal of Propulsion and Power, 2001, 17(5): 998-1004. |
53 | Carl F L and JEFFREY L M. Overview of rocket engine control: NASA-TM-105318 [R].Cleveland: NASA Lewis Research Center, 1991. |
54 | DAI X W, RAY A. Damage-mitigating control of a reusable rocket engine: Part Ⅱ-formulation of an optimal policy[J]. Journal of Dynamic Systems, Measurement, and Control, 1996, 118(3): 409-415. |
55 | MERRILL W, LORENZO C. A reusable rocket engine intelligent control: AIAA-1988-3114[R]. Reston: AIAA, 1988. |
56 | GONCHAROV N, ORLOV V, RACHUK V, et al. Reusable launch vehicle propulsion based on the RD-0120 engine: AIAA-1995-3003[R]. Reston: AIAA, 1995. |
57 | RUDIS M, ORLOV V, RACHUCK V, et al. A universal methodology for predicting liquid rocket engine durability based on Russian RD-0120 engine operating experience: AIAA-1995-2963[R]. Reston: AIAA, 1995. |
58 | Биргер Л А, Шорр Б Ф, Демянушко И В, др. Подробности тепловой прочности машины.[M] Москва: Машиностроение, 1975. |
BIRGER L A, SHORR B F, DEMYANUSHKO I V, et al. Details of the thermal strength of the machine[M] Moscow: Mechanical Manufacturing, 1975 (in Russian). | |
59 | FUKUSHIMA Y, LMOTO T. Lessons learned in the development of the LE-5 and LE-7: AIAA-1994-3375[R]. Reston: AIAA, 1994. |
60 | KISHIMOTO K, KAKUMA Y, KOYARI Y. LE-5 engine start sequence and its extension to the expander-bleed-cycle: AIAA-1991-2567[R]. Reston: AIAA, 1991. |
61 | FUJITA M, FUKUSHIMA Y. Improvement of LE-5A and LE-7 engine: AIAA-1996-2847[R]. Reston: AIAA, 1996. |
62 | KAMIJO K, YAMADA H, SAKAZUME N, et al. Developmental history of liquid oxygen turbopumps for the LE-7 engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2001, 44(145): 155-163. |
63 | NAKANISHI H, SOGAME E, SUZUKI A, et al. Le-5 oxygen-hydrogen rocket engine for h-i launch vehicle[M]∥Space Mankind's Fourth Environment. Amsterdam: Elsevier, 1982: 511-522. |
64 | KANMURIi A, KAMDA T, WAKAMATSU T. Analysis of LOX/LH2 rocket engine (LE-7)[J]. AIAA Journal, 1989(89):2736 |
65 | SUNAKAWA H, KOBAYASHI T, OKITA K, et al. Development status of electrical valve control system for LE-9 engine: AIAA-2017-4671[R]. Reston: AIAA, 2017. |
66 | NEGORO N, TAMURA T, MANAKO H, et al. Overview of LE-9 engine development for H3 launch vehicle: IAC-16-C4.1.2[R]. Paris: International Astronautical Federation, 2016. |
67 | DE KORVER V, LASSOUDIERE F, FIORENTINO C, et al. Vulcain X technological demonstration roadmap: AIAA-2007-5489[R]. Reston: AIAA, 2007. |
68 | ALLIOT P, LASSOUDIERE F, FIORENTINO C, et al. Develoment status of the vinci engine for the ARIANE 5 upper stage: AIAA-2005-3755[R]. Reston: AIAA, 2005. |
69 | GOIRAND B, GALLARDO J F, BOSSON R. Vinci hydrogen turbopump-A new step in safe, faster and cheaper developments: AIAA-2000-3156[R]. Reston: AIAA, 2000. |
70 | 李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天, 2014, 20(5): 427-431. |
LI B, ZHANG X P, MA D Y. The LOX/Kerosene rocket engine for Chinese new-generation manned launch vechicle. J]. Manned Spaceflight, 2014, 20(5): 427-431 (in Chinese). | |
71 | MUSGRAVE J, PAXSON D, LITT J, et al. A demonstration of an intelligent control system for a reusable rocket engine: NASA-TM-105794[R]. Cleveland: NASA Lewis Research Center, 1992. |
72 | LITT J S, SIMON D L, GARG S, et al. A survey of intelligent control and health management technologies for aircraft propulsion systems[J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(12): 543-563. |
73 | MUSGRAVE J L, PAXSON D E and LITT J S. A demonstration of an intelligent control system for a reusable rocket engine: NASA-TM-105794[R]. Cleveland: NASA Lewis Research Center, 1992. |
74 | 包为民, 祁振强, 张玉. 智能控制技术发展的思考[J]. 中国科学(信息科学), 2020, 50(8): 1267-1272. |
BAO W M, QI Z Q, ZHANG Y. Thoughts on the development of intelligent control technology[J]. Scientia Sinica (Informationis), 2020, 50(8): 1267-1272 (in Chinese). | |
75 | PÉREZ-ROCA S, MARZAT J, PIET-LAHANIER H, et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences, 2019, 107: 63-84. |
76 | WAXENEGGER-WILFING G, DRESIA K, DEEKEN J, et al. A reinforcement learning approach for transient control of liquid rocket engines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2938-2952. |
77 | CHENG L, WANG Z B, JIANG F H. Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm[J]. Astrodynamics, 2019, 3(4): 375-386. |
78 | DRESIA K, JENTZSCH S, WAXENEGGER-WILFING G, et al. Multidisciplinary design optimization of reusable launch vehicles for different propellants and objectives[J]. Journal of Spacecraft and Rockets, 2021, 58(4): 1017-1029. |
79 | MARIOLIS I, PELEKA G, KARGAKOS A, et al. Pose and category recognition of highly deformable objects using deep learning[C]∥ 2015 International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2015: 655-662. |
80 | KAPPLER D, BOHG J, SCHAAL S. Leveraging big data for grasp planning[C]∥ 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 4304-4311. |
81 | PIERSON H A, GASHLER M S. Deep learning in robotics: A review of recent research[J]. Advanced Robotics, 2017, 31(16): 821-835. |
82 | NEVEROVA N, WOLF C, TAYLOR G W, et al. Multi-scale deep learning for gesture detection and localization[C]∥European Conference on Computer Vision. Cham: Springer Cham, 2015: 474-490. |
83 | POLYDOROS A S, NALPANTIDIS L, KRÜGER V. Real-time deep learning of robotic manipulator inverse dynamics[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 3442-3448. |
84 | ZHANG T H, KAHN G, LEVINE S, et al. Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 528-535. |
85 | RAY A, HOLMES M S, LORENZO C F. Life extending controller design for reusable rocket engines[J]. The Aeronautical Journal, 2001, 105(1048): 315-322. |
86 | 吴建军, 魏鹏飞. 可重复使用液体火箭发动机智能减损控制技术[J]. 火箭推进, 2005, 31(4)8-14. |
WU J J, WEI P F. Intelligent damage-mitigating control techniques for reusable liquid-propellant rocket engines[J]. Journal of Rocket Propulsion, 2005, 31(4):8-14 (in Chinese). | |
87 | 程玉强, 吴建军, 刘洪刚. 基于粒子群算法的可重复使用液体火箭发动机减损优化问题研究[J]. 弹箭与制导学报, 2009, 29(2): 151-154. |
CHENG Y Q, WU J J, LIU H. Particle swarm optimization algorithm based damage-mitigating control for reusable liquid propellant rocket engine[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2): 151-154 (in Chinese). | |
88 | LE G S. Automatic & Control applications in the European space propulsion domain. From need expression to preparation for an uncertain future[C]∥ACD2016 Airbus Safran Launchers. Toulous:Airbus, 2016. |
89 | CARL F L, WALTER C M. Life extending control: NASA-92A29166[R]. Washington, D. C. : NASA, 1991. |
90 | WANG L, LIU Y P, LIU X D. A novel global sliding mode control strategy for attitude control of reusable launch vehicles in the reentry phase[C]∥ 2017 36th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2017: 3615-3620. |
91 | 都延丽, 林海兵, 刘武, 等. 可重复使用运载器预测制导与鲁棒容错控制[J]. 哈尔滨工业大学学报, 2021, 53(6):62-70. |
DU Y L, LIN H B, LIU W, et al. Predictive guidance and robust fault-tolerant control for RLVs[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 62-70 (in Chinese). | |
92 | XU K J, GUO Y Q, LIU L Y. Multivariable control coupling analysis and ALQR thrust controller design of liquid rocket engine[C]∥ 2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2021: 187-192. |
93 | 王军杰, 钟明磊. Meilin和猛禽液体火箭发动机技术研究与启示[C]∥第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第四册). 北京: 中国学术期刊电子出版社, 2020: 115-122. |
WANG J J, ZHONG M L. Meilin and Raptor liquid rocket engine technology research and enlightenment [C]∥Proceedings of the 5th Aerospace Power Joint Conference and the 41st Technical Exchange Meeting of China Aerospace Third Professional Information Network (Volume 4). Beijing: China Academic Journal Electrotic publishing House, 2020: 115-122 (in Chinese). | |
94 | BERGER B. Falcon 1 Failure Traced to a Busted Nut [EB/OL]. Space.com. (2006-07-19) [2023-01-13]. . |
95 | WHITESIDES L H. SpaceX Completes Development of Rocket Engine for Falcon 1 and 9[EB/OL]. Wired Science. (2008-3-23) [2023-01-13] . |
96 | GASKILL B. SpaceX has magical goals for Falcon 9[EB/OL]. Nasa Spaceflight. (2008-02-28) [2023-01-13]. . |
97 | NELSON K. SpaceX CRS-1 mission update[EB/OL]. (2016-3-31) [2023-01-13]. . |
98 | SpaceX. Archived from the original on March 7[EB/OL] (2020-9-4) [2023-01-13]. ∥. |
99 | Berger, Eric. How a tiny bit of lacquer grounded new Falcon 9 rockets for a month [EB/OL] (2020-10-29) [2023-01-13]. . |
100 | SpaceX. Falcon 9 [EB/OL]. (2018-2-8) [2023-01-13]. ∥. |
101 | Falcon SpaceX 9 Data Sheet [EB/OL]. Space Launch Report. (2019-9-21) [2023-01-13]. ∥. |
102 | Evolution of the SapceX Merlin-1 engine (and parameter) [EB/OL] (2022-2-12) [2023-01-13]. . |
103 | TODD D. Musk goes for methane-burning reusable rockets as step to colonise Mars[EB/OL]. (2012-11-20) [2023-01-13]. . |
104 | TODD D. SpaceX's Mars rocket to be methane-fuelled[EB/OL]. Flightglobal. (2012-11-22) [2023-01-13]. . |
105 | NASA Stennis Space Center to Test SpaceX Next Generation Rocket Engines Systems [EB/OL]. Mississippi development authority. (2013-10-2) [2023-01-13]. . |
106 | ELLUSCIO A G. ITS Propulsion – The evolution of the SpaceX Raptor engine[EB/OL]. NASASpaceFlight.com. (2021-126) [2023-01-13]. . |
107 | Ship 20 prepares for Static Fire - New Raptor 2 factory rises[EB/OL]. NASASpaceFlight.com. (2021-10-11) [2023-01-13]. . |
108 | Musk Elon. 250 tons of force is achievable [EB/OL]. Twitter. (2022-6-12) [2023-01-13] . |
109 | TREVOR S. Raptor 1 vs Raptor 2: What did spaceX change? [EB/OL]. (2022-7-14) [2023-01-13]. . |
110 | A SpaceX technician was in a coma for two months after a rocket test accident: Elon Musk’s company, silent [EB/OL] (2022-10-20) [2023-01-13]. . |
111 | URNES J, YEAGER R. Flight demonstration of the self-repairing flight control system in a NASA F-15 aircraft: AIAA-1991-3106[R]. Reston: AIAA, 1991. |
112 | BAUMGARTEN G, BUCHHOLZ J, HEINE W. A new reconfiguration concept for flight control systems[C]∥ Guidance, Navigation, and Control Conference. Reston: AIAA, 1995: 9-19. |
113 | HODEL A, CALLAHAN R. Autonomous reconfigurable control allocation (ARCA) for reusable launch vehicles: AIAA-2002-4777[R]. Reston: AIAA, 2002. |
114 | SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Optimal trajectory reconfiguration and retargeting for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1794-1802. |
115 | YIKILMAZ C, ÜRE N K. Deep learning based fault tolerant thrust vector control: AIAA-2022-0970[R]. Reston: AIAA, 2022. |
116 | 周川, 胡维礼, 陈庆伟, 等. 智能重构控制技术及其应用[J]. 系统工程与电子技术, 2001, 23(6): 59-62. |
ZHOU C, HU W L, CHEN Q W, et al. Method and application of intelligent reconfigurable control[J]. Systems Engineering and Electronics, 2001, 23(6): 59-62 (in Chinese). | |
117 | 朱海洋, 吴燕生, 容易, 等. 适应有限故障的运载火箭神经网络自适应容错控制[J]. 西北工业大学学报, 2020, 38(3): 668-676. |
ZHU H Y, WU Y S, RONG Y, et al. A neural network adaptive fault-tolerant control method for launch vehicles with the limited faults[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 668-676 (in Chinese). | |
118 | 马艳如, 石晓荣, 刘华华, 等. 运载火箭姿态系统自适应神经网络容错控制[J]. 宇航学报, 2021, 42(10): 1237-1245. |
MA Y R, SHI X R, LIU H H, et al. Adaptive neural network fault tolerant control of launch vehicle attitude system[J]. Journal of Astronautics, 2021, 42(10): 1237-1245 (in Chinese). | |
119 | 李爽, 刘旭, 叶松, 等. 运载火箭动力系统故障下制导控制技术研究进展[J]. 上海航天(中英文), 2022(4): 76-93. |
LI S, LIU X, YE S, et al. Overview of guidance and control technologies for launch vehicles under propulsion system faults[J]. Aerospace Shanghai (Chinese&English), 2022(4): 76-93 (in Chinese). | |
120 | 吴建军, 朱晓彬, 程玉强, 等. 液体火箭发动机智能健康监控技术研究进展[J]. 推进技术, 2022, 43(1): 1-13. |
WU J J, ZHU X B, CHENG Y Q, et al. Research progress of intelligent health monitoring technology for liquid-propellant rocket engines[J]. Journal of Propulsion Technology, 2022, 43(1): 1-13 (in Chinese). | |
121 | PETTIT C, BARKHOUDARIAN S, DAUMANN J A, et al. Reusable rocket engine advanced health management system: Architecture and technology evaluation-Summary: AIAA-1999-2527[R]. Reston: AIAA, 1999. |
122 | WU G. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management: N95-27392[R]. Washington, D.C.: NASA, 1995. |
123 | FIGUEROA J, MELCHER K. Integrated systems health management for intelligent systems: AIAA-2011-1492[R]. Reston: AIAA, 2011. |
124 | 袁利, 王淑一. 航天器控制系统智能健康管理技术发展综述[J]. 航空学报, 2021, 42(4): 525044. |
YUAN L, WANG S Y. A review on development of intelligent health management technology for spacecraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525044 (in Chinese). | |
125 | 王昊义, 吴建军, 张宇, 等. 基于吸气式电推进的智能姿轨控系统: CN112572833A[P]. 2021-03-30. |
WANG H Y, WU J J, ZHANG Y, et al. Intelligent attitude and orbit control system based on air-breathing electric propulsion: CN112572833A[P]. 2021-03-30 (in Chinese). | |
126 | 吴建军,郑鹏,张宇 等,一种全电推进立方体卫星 : CN202111595136.8[P]. 2022-03-04. |
WU J J, ZHENG P, ZHANHG Y, et al. An all electric propulsion cube satellite: CN202111595136.8[P]. 2022-03-04 (in Chinese). | |
127 | 吴必琦, 吴建军, 程玉强, 等. 可应用于多流态的智能控制吸气式电推进系统: CN110748467B[P]. 2020-08-21. |
吴必琦, 吴建军, 程玉强, 张宇, 李健, 谭胜, 欧阳, 杜忻洳. Intelligent control air suction type electric propulsion system applicable to multi-flow state: CN110748467B[P]. 2020-08-21 (in Chinese). | |
128 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
129 | 韩明仁, 王玉峰. 基于强化学习的全电推进卫星变轨优化方法[J]. 系统工程与电子技术, 2022, 44(5): 1652-1661. |
HAN M R, WANG Y F. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning[J]. Systems Engineering and Electronics, 2022, 44(5): 1652-1661 (in Chinese). | |
130 | 张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望[J]. 宇航学报, 2022, 43(7): 866-879. |
ZHANG Y, HUANG X, LU K F, et al. Research progress and prospect of the hypersonic flight vehicle control technology[J]. Journal of Astronautics, 2022, 43(7): 866-879 (in Chinese). | |
131 | 常亚菲, 姜甜甜. 高超声速再入飞行器的特征建模及自适应递推滑模控制[J]. 宇航学报, 2018, 39(8): 889-899. |
CHANG Y F, JIANG T T. Characteristic modeling and adaptive recursive sliding mode control for hypersonic reentry vehicle[J]. Journal of Astronautics, 2018, 39(8): 889-899 (in Chinese). | |
132 | 王冠, 马长波, 茹海忠, 等. 一种非仿射高超声速飞行器的智能控制方法[J]. 飞控与探测, 2021(4): 59-65. |
WANG G, MA C B, RU H Z, et al. An intelligent control method for non-affine hypersonic vehicles[J]. Flight Control & Detection, 2021(4): 59-65 (in Chinese). | |
133 | 田维平, 雷晓龙, 唐敏, 等. 固体动力智能化发展技术展望[J]. 固体火箭技术, 2021, 44(2): 146-150. |
TIAN W P, LEI X L, TANG M, et al. Prospect of the intelligentized solid propulsion technology[J]. Journal of Solid Rocket Technology, 2021, 44(2): 146-150 (in Chinese). | |
134 | 孙明波, 安彬, 汪洪波, 等. 超燃冲压发动机仿真: 从数值飞行到数智飞行[J]. 力学学报, 2022, 54(3): 588-600. |
SUN M B, AN B, WANG H B, et al. Numerical simulation of the scramjet engine: From numerical flight to intelligent numerical flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 588-600 (in Chinese). | |
135 | 吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用, 2012, 38(5): 1-7. |
WU H X, TAN S P. Spacecraft control: present and future[J]. Aerospace Control and Application, 2012, 38(5): 1-7 (in Chinese). | |
136 | 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1): 1-6. |
WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control: Past, present and future[J]. Aerospace Control and Application, 2016, 42(1): 1-6 (in Chinese). | |
137 | KLEIN M, HAYOUN D, GONIDEC S L, et al. Method and a circuit for regulating a rocket engine: US20170101963A1[P]. 2017. |
138 | GONIDEC S L. Device for controlling a regulated system, and an engine including such a device: US8005554[P]. 2011. |
139 | GONIDEC L E. Method for controlling the pressure and a mixture ratio of a rocket engine, and corresponding device: EP3332108A1[P]. 2015. |
140 | 张守武, 王恒, 陈鹏, 等. 神经网络在无人驾驶车辆运动控制中的应用综述[J]. 工程科学学报, 2022, 44(2): 235-243. |
ZHANG S W, WANG H, CHEN P, et al. Overview of the application of neural networks in the motion control of unmanned vehicles[J]. Chinese Journal of Engineering, 2022, 44(2): 235-243 (in Chinese). | |
141 | 程林, 蒋方华, 李俊峰. 深度学习在飞行器动力学与控制中的应用研究综述[J]. 力学与实践, 2020, 42(3): 267-276. |
CHENG L, JIANG F H, LI J F. A review on the applications of deep learning in aircraft dynamics and control[J]. Mechanics in Engineering, 2020, 42(3): 267-276 (in Chinese). | |
142 | XU X, HU D W, HE H G. Accelerated reinforcement learning control using modified CMAC neural networks[C]∥ Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02. Piscataway: IEEE Press, 2003: 2575-2578. |
143 | XU X, LIAN C Q, ZUO L, et al. Kernel-based approximate dynamic programming for real-time online learning control: An experimental study[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1): 146-156. |
144 | LU Y, XU X, ZHANG X L, et al. Hierarchical reinforcement learning for autonomous decision making and motion planning of intelligent vehicles[J]. IEEE Access, 2020, 8: 209776-209789. |
145 | ZHANG X L, PENG Y Q, LUO B, et al. Model-based safe reinforcement learning with time-varying state and control constraints: An application to intelligent vehicles [J]. Journal of Latex Class Filtes, 2021, 14(8) :1-14. |
[1] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[2] | 单圣哲, 张伟伟. 基于自博弈深度强化学习的空战智能决策方法[J]. 航空学报, 2024, 45(4): 328723-328723. |
[3] | 郝振洋, 孙枫涛, 季志豪, 景新元, 曹鑫. 一种适用于航空发电机系统的闭环I/f控制方法[J]. 航空学报, 2024, 45(3): 328678-328678. |
[4] | 李忠智, 马金毅, 艾剑良, 董一群. 拟VGG16网络的航空传感器故障检测分类[J]. 航空学报, 2023, 44(S1): 727615-727615. |
[5] | 何林坤, 薛文超, 张冉, 李惠峰. 运载火箭动力着陆段制导控制方法综述与展望[J]. 航空学报, 2023, 44(23): 628462-628462. |
[6] | 张旭辉, 解春雷, 刘思佳, 闫溟, 邢思远. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302-529302. |
[7] | 惠俊鹏, 汪韧, 俞启东. 基于强化学习的再入飞行器“新质”走廊在线生成技术[J]. 航空学报, 2022, 43(9): 325960-325960. |
[8] | 文谦, 杨家伟, 武泽平, 杨希祥, 赵海龙, 王志祥. 快速交叉验证改进的运载火箭近似建模方法[J]. 航空学报, 2022, 43(9): 225967-225967. |
[9] | 徐家进, 高镇同. 疲劳统计学智能化的进一步研究[J]. 航空学报, 2022, 43(8): 225138-225138. |
[10] | 王皓, 陈根良. 机器人型装备在航空装配中的应用现状与研究展望[J]. 航空学报, 2022, 43(5): 626128-626128. |
[11] | 胡庆雷, 邵小东, 杨昊旸, 段超. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022, 43(10): 527351-527351. |
[12] | 蔡国飙, 张百一, 贺碧蛟, 翁惠焱, 刘立辉. 真空羽流智能化计算[J]. 航空学报, 2022, 43(10): 527352-527352. |
[13] | 闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报, 2022, 43(10): 527869-527869. |
[14] | 孙智孝, 杨晟琦, 朴海音, 白成超, 葛俊. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799-525799. |
[15] | 黄旭星, 李爽, 杨彬, 孙盼, 刘学文, 刘新彦. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4): 524201-524201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学