[1] 徐家进. 疲劳统计学智能化中的高镇同法[J]. 北京航空航天大学学报, 2021, 47(10): 2024-2033. XU J J. Gao Zhentong method in intelligentization of statistics in fatigue[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2024-2033 (in Chinese). [2] 高镇同. 疲劳应用统计学[M]. 北京: 国防工业出版社, 1986. GAO Z T. Fatigue applied statistics[M]. Beijing: National Defense Industry Press, 1986 (in Chinese). [3] KISHOR S T. 计算机应用与可靠性工程中的概率统计[M].第2版. 伍志韬, 张越译. 北京: 电子工业出版社, 2015: 601-602. KISHOR S T.Probability and statistics with reliability, queuing, and computer science applications probability and statistics with reliability, queuing, and computer science applications[M]. second edition.WU Z T,ZHANG Y translater. Beijing: Publishing House of Electronics Industry, 2015: 601-602(in Chinese). [4] 徐自力, 姜兴渭. 威布尔分布3参数置信限估计及分布类型检验[J]. 航空学报, 1996, 17(4): 477-479. XU Z L, JIANG X W. The estimation of confidence limit of Weibull three parameter distribution and examination of distribution type[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 477-479 (in Chinese). [5] 陈道礼. 双参数威布尔分布的参数区间估计的直接方法[J]. 机械强度, 1996, 18(3):32-36. CHEN D L. A direct approach to interval estimation of parameters of the two-parameter weibull distribution[J]. Journal of Mechanical Strength, 1996, 18(3): 32-36(in Chinese). [6] 傅惠民, 高镇同, 徐人平. 三参数威布尔分布的置信限[J]. 航空学报, 1992, 13(3): 153-162. FU H M, GAO Z T, XU R P. Confidence limits of three-parameter Weibull population percentiles[J]. Acta Aeronautica et Astronautica Sinica, 1992, 13(3): 153-162 (in Chinese). [7] 费史.概率论及数理统计[M].王福保,译.上海:上海科技出版社,1962:81,84. FISZ M.Wahrscheinlichkitsrechnung und Mathematische Stastistik[M].WANG F B translater. Shanghai: Shanghai Science and Technology Press,1962: 81,84(in Chinese). [8] 蔡玉书. 重要不等式[M]. 2版. 合肥: 中国科学技术大学出版社, 2012. CAI Y S. Important inequality[M].2nd ed. Hefei: University of Science and Technology of China Press, 2012 (in Chinese). [9] MEYER P L.概率引论及统计应用[M]. 潘考瑞译.北京: 高等教育出版社, 1986: 385-386. MEYER P L. Introductory probability and statistical application[M]. PAN K R translater.Beijing: Higher Education Press, 1986: 385-386 (in Chinese). [10] 道格拉斯·蒙哥马利,伊丽莎白·派克,杰弗里·瓦伊宁.线性回归分析导论[M].王辰勇,译.北京:机械工业出版社,2019:13-14. MONTGOMERY D C,PECK E A, VINING G G. Introduction to linear regression analysis[M].WANG C Y translater.Bejing: Machinery Industry Press, 2019:13-14(in Chinese). [11] 茆诗松, 王静龙, 濮晓龙. 高等数理统计[M]. 2版. 北京: 高等教育出版社, 2006. MAO S S, WANG J L, PU X L. Advanced mathematical statistics[M].2nd ed. Beijing: Higher Education Press, 2006 (in Chinese). [12] HOGG R V, MCKEAN J W, CRAIG A T.数理统计导论[M].7版.王忠玉,卜长江,译.北京:机械工业出版社,2015:174-175. HOGG R V, MCKEAN J W, CRAIG A T. Introduction to mathematical statistics[M].7th ed. WANG Z Y, BU C J, translater. Beijing: Machinery Industry Press, 2015:174-175(in Chinese). [13] 张锡清.威布尔参数的最优估计[J].哈尔滨电工学院学报,1995,18(4):402-406. ZHANG X Q. Optimal estimation of Weibull parameters[J]. Journal of Harbin Electrical Engineering Institute,1995, 18(4):402-406(in Chinese). [14] 陈道礼. 估计威布尔分布参数、可靠寿命和可靠度的置信限的新方法[J]. 机械设计, 1997, 14(10): 19-22, 50. CHEN D L. A new approach to the estimation of confidence limits on parameters and reliable life and reliability for the weibull distribution[J]. Machine Design, 1997, 14(10): 19-22, 50 (in Chinese). [15] 邹林全. 定时截尾试验Weibull分布参数的近似置信区间[J]. 南京理工大学学报, 2001, 25(2): 215-219. ZOU L Q. Approximate confident interval of parameter for weibull distribution under fix-time censored test[J]. Journal of Nanjing University of Science and Technology, 2001, 25(2): 215-219 (in Chinese). [16] 赵呈建.双参数威布尔分布参数区间估计的直接方法[D].天津:南开大学,2017. ZHAO C J.Direct method for estimating the interval of two-parameter Weibull distribution[D].Tianjing: Nankai University,2017(in Chinese). [17] 张平, 王蓉华, 徐晓岭. 两参数Weibull分布参数的联合置信区间[J]. 数学理论与应用, 2010, 30(3): 58-62. ZHANG P, WANG R H, XU X L. Joint confidence interval of parameters of two-parameter Weibull distribution[J]. Mathematical Theory and Applications, 2010, 30(3): 58-62 (in Chinese). [18] 谈嘉祯, 边新孝. 三参数威布尔分布置信限的确定和 C—R—S—N 曲线的拟合[J]. 北京科技大学学报, 1994, 16(5):425-430. TAN J Z, BIAN X X. The determination of confidence limits for Weibull distribution of three parameter and the fitting of C—R—S—N curves[J]. Journal of University of Science and Technology Beijing, 1994, 16(5):425-430 (in Chinese). [19] 费鹤良, 徐晓岭. 三参数威布尔分布参数的联合置信域[J]. 应用概率统计, 1992, 8(4): 62-66. FEI H L, XU X L. Simultaneous confidence region of three parameters for the three-parameter Weibull distribution[J]. Chinese Journal of Applied Probability and Statistics, 1992, 8(4): 62-66 (in Chinese). [20] 夏新涛, 徐永智, 金银平, 等. 用自助加权范数法评估三参数威布尔分布可靠性最优置信区间[J]. 航空动力学报, 2013, 28(3): 481-488. XIA X T, XU Y Z, JIN Y P, et al. Assessment of optimum confidence interval of reliability with three-parameter Weibull distribution using bootstrap weighted-norm method[J]. Journal of Aerospace Power, 2013, 28(3): 481-488 (in Chinese). [21] XU J J. Digital experiment for estimating three parameters and their confidence intervals of Weibull Distribution[J]. International Journal of Science, Technology and Society, 2022,10(2):72-81. |