1 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
Zhang W W, Kou J Q, Liu Y L. Intelligent empowerment in fluid dynamics perspective[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
2 |
张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454.
|
|
ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese).
|
3 |
陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480.
|
|
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese).
|
4 |
LUI H F S, WOLF W R. Construction of reduced-order models for fluid flows using deep feedforward neural networks[J]. Journal of Fluid Mechanics, 2019, 872: 963-994.
|
5 |
陈皓, 郭明明, 田野, 等.卷积神经网络在流场重构研究中的进展[J].力学学报, 2022, 54(9): 2343-2360.
|
|
Chen H, Guo M M, Tian Y, et al. The progress of convolutional neural networks in flow field reconstruction research. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese).
|
6 |
YANG Z S, DONG Y D, DENG X G, et al. AMGNET: multi-scale graph neural networks for flow field prediction[J]. Connection Science, 2022, 34(1): 2500-2519.
|
7 |
CAO W B, SONG J H, ZHANG W W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36(2): 027134.
|
8 |
WANG J, HE C, LI R Z, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108.
|
9 |
SABATER C, STÜRMER P, BEKEMEYER P. Fast predictions of aircraft aerodynamics using deep-learning techniques[J]. AIAA Journal, 2022, 60(9): 5249-5261.
|
10 |
JIN X W, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30(4): 047105.
|
11 |
SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103.
|
12 |
HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning[J]. Aerospace Science and Technology, 2020, 105: 105949.
|
13 |
DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predictions around airfoils[J]. Computers & Fluids, 2022, 236: 105312.
|
14 |
THUEREY N, WEIßENOW K, PRANTL L, et al. Deep learning methods for reynolds-averaged navier–stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1): 25-36.
|
15 |
ZUO K J, YE Z Y, ZHANG W W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids, 2023, 35(3): 037127.
|
16 |
LI Y F, CHANG J T, KONG C, et al. Recent progress of machine learning in flow modeling and active flow control[J]. Chinese Journal of Aeronautics, 2022, 35(4): 14-44.
|
17 |
LI Y F, CHANG J T, WANG Z A, et al. Inversion and reconstruction of supersonic cascade passage flow field based on a model comprising transposed network and residual network[J]. Physics of Fluids, 2019, 31(12): 126102.
|
18 |
杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9): 2251-2260.
|
|
DU Z, XU Q Y, SONG Z S, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9): 2251-2260 (in Chinese).
|
19 |
JIN Y, LI S, JUNG O. Prediction of flow properties on turbine vane airfoil surface from 3D geometry with convolutional neural network[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019
|
20 |
LI J X, LI Y Z, LIU T Y, et al. Multi-fidelity graph neural network for flow field data fusion of turbomachinery[J]. Energy, 2023, 285: 129405.
|
21 |
冯云阳, 宋西镇, 袁巍, 等. 基于物理嵌入神经网络的叶栅损失模型[J]. 航空动力学报, 2023, 38(7): 1615-1625.
|
|
FENG Y Y, SONG X Z, YUAN W, et al. Physics-informed neural networks based cascade loss model[J]. Journal of Aerospace Power, 2023, 38(7): 1615-1625 (in Chinese).
|
22 |
YANG G A, YANG Y, LU Z Z, et al. STA-TSN: spatial-Temporal Attention Temporal Segment Network for action recognition in video[J]. PLoS One, 2022, 17(3): e0265115.
|
23 |
LI J N, WONG Y, ZHAO Q, et al. Attention transfer from web images for video recognition[C]∥ Proceedings of the 25th ACM international conference on Multimedia. New York: ACM, 2017: 1-9.
|
24 |
ZHAO Y C, ZHANG J P, DUAN R, et al. Lightweight target-aware attention learning network-based target tracking method[J]. Mathematics, 2022, 10(13): 2299.
|
25 |
WANG Y Q, LIU T Y, ZHANG D. Aerodynamic prediction on the off-design performance of a S-CO2 turbine based on deep learning[C]∥ Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, 2021.
|
26 |
POST P, WINHART B, DI MARE F. Investigation of physics-informed neural networks based solution techniques for internal flows[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022.
|
27 |
CHEN C F R, FAN Q F, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 347-356.
|
28 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[DB/OL]. arXiv preprint: 2010.11929, 2020.
|