张迁1,2, 杨垣鑫1,2, 唐硕1,2, 岳向航1,2, 许志1,2(
)
收稿日期:2022-10-20
修回日期:2022-11-16
接受日期:2022-12-07
出版日期:2023-09-15
发布日期:2022-12-14
通讯作者:
许志
E-mail:xuzhi@nwpu.edu.cn
基金资助:
Qian ZHANG1,2, Yuanxin YANG1,2, Shuo TANG1,2, Xianghang YUE1,2, Zhi XU1,2(
)
Received:2022-10-20
Revised:2022-11-16
Accepted:2022-12-07
Online:2023-09-15
Published:2022-12-14
Contact:
Zhi XU
E-mail:xuzhi@nwpu.edu.cn
Supported by:摘要:
两级固体上升器是大型火星样本回收计划中的重要组成部分,针对固体火星上升器在样品返回任务中的最优动力设计与耗尽关机多约束制导问题开展研究,提出了一种解析-数值融合的入轨段优化方法,最优解析方法为固体动力的优化设计提供理论依据,数值优化方法在理论最优解邻近进一步解决实际飞行中面临的耗尽关机制导问题。首先,为了分析与优化固体上升器最大载荷质量下的动力参数,基于庞特里亚金极大值原理构建了推力矢量方向的最优控制问题,推导出最优动力参数的新的必要条件来消去协态乘子矢量,进而获得了最优控制量的解析表达式。然后,针对上升器在实际飞行条件下面临的参数偏差及不确定性干扰,提出了一种融合最优解析解序列的二次型数值优化方法,该方法通过高效反向递归敏感度矩阵在线快速迭代计算出飞行指令,控制火星上升器在耗尽关机方式下高精度进入预定目标轨道。最后,推力矢量方向的最优解析表达式,通过与GPOPS优化方法的对比与分析,验证了在必要条件下的最优性与正确性,并给出了火星上升器的最优动力方案。数值仿真结果表明:在配置的参数偏差及不确定性干扰下,火星上升器采用所提的解析-数值融合优化方法,能够在耗尽关机方式下实现高精度入轨任务,具有一定的理论意义和工程应用价值。
中图分类号:
张迁, 杨垣鑫, 唐硕, 岳向航, 许志. 火星固体上升器最优推力条件及制导方法[J]. 航空学报, 2023, 44(17): 328155.
Qian ZHANG, Yuanxin YANG, Shuo TANG, Xianghang YUE, Zhi XU. Optimal thrust conditions and guidance for Mars solid ascent vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 328155.
表 2
制导算法实施逻辑
| 名称 | 编号 | 操作内容 | 算法输出 |
|---|---|---|---|
最优推力设计 OCP1方法 | Step 1 | 输入二级初始状态 | Out 1优化设计值: Out 2最优条件: |
| Step 2 | 根据闭环解析 | ||
| Step 3 | 在每个 | ||
| Step 4 | 在时间区间[ | ||
| Step 5 | 计算 | ||
耗尽关机制导 OCP2方法 | Step 6 | 根据Y1=0或Y2=0由非线性方程组 | Out 3制导修正: 箭体执行: |
| Step 7 | 根据OCP1的 | ||
| Step 8 | 计算离散轨迹上状态量及控制量的敏感度矩阵式(50)~式(52) | ||
| Step 9 | 采用数值迭代计算方法 | ||
| Step 10 | 判断 | ||
| Step 11 | 判断 |
| 1 | SEPHTON M A, CARTER J N. The chances of detecting life on Mars[J]. Planetary and Space Science, 2015, 112: 15-22. |
| 2 | 马广富, 龚有敏, 郭延宁, 等. 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报, 2020, 41(7): 023651. |
| MA G F, GONG Y M, GUO Y N, et al. Human Mars mission: Research progress and GNC key technologies during EDL[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 023651 (in Chinese). | |
| 3 | YAGHOUBI D, MA P. Integrated design results for the MSR DAC-0.0 Mars ascent vehicle[C]∥2021 IEEE Aerospace Conference. 2021: 1-17. |
| 4 | YAGHOUBI D, SCHNELL A. Mars ascent vehicle hybrid propulsion configuration[C]∥2020 IEEE Aerospace Conference. 2020: 1-11. |
| 5 | YAGHOUBI D, SCHNELL A. Mars ascent vehicle solid propulsion configuration[C]∥2020 IEEE Aerospace Conference. 2020: 1-11. |
| 6 | XU Z, ZHANG Q. Multi-constrained ascent guidance for solid propellant launch vehicles[J]. Aerospace Science and Technology, 2018, 76: 260-271. |
| 7 | 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报, 2021, 42(11): 1416-1426. |
| HAO Z M, ZHANG R, WANG J W, et al. Real time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics, 2021, 42(11): 1416-1426 (in Chinese). | |
| 8 | 张志健, 王小虎. 固体火箭多约束耗尽关机的动态逆能量管理方法[J]. 固体火箭技术, 2014, 37(4): 435-441, 462. |
| ZHANG Z J, WANG X H. Inverse dynamic energy management for multi-constrained depleted shutdown of solid rocket[J]. Journal of Solid Rocket Technology, 2014, 37(04): 435-441, 462 (in Chinese). | |
| 9 | 徐衡, 陈万春. 满足多约束的主动段能量管理制导方法[J]. 北京航空航天大学学报, 2012, 38(5): 569-573. |
| XU H, CHEN W C. Energy management ascent guidance algorithm with multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 569-573 (in Chinese). | |
| 10 | BRYSON A E, HO Y C. Applied optimal control[M]. Washington: Hemisphere Publishing Corporation, 1975: 366-367. |
| 11 | CONWAY B A. Spacecraft trajectory optimization[M]. Cambridge: Cambridge University Press, 2010: 323. |
| 12 | 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J]. 宇航学报, 2003(5): 484-489, 501. |
| CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003(5): 484-489, 501 (in Chinese). | |
| 13 | PAUL V D P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for space launch system block-1 and block-1B vehicles[C]∥The 41st AAS Guidance, Navigation, and Control Conference. 2018: 1041-1052. |
| 14 | 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学: 技术科学, 2009, 39(4): 696-706. |
| RU J X. An iterative guidance method for liquid launch vehicles[J]. Science in China: Technological Sciences, 2009, 39(4): 696-706 (in Chinese). | |
| 15 | 赵吉松, 谷良贤, 潘雷. 月球最优软着陆两点边值问题的数值解法[J]. 中国空间科学技术, 2009, 29(4): 21-27. |
| ZHAO J S, GU L X, PAN L. Numerical solution of TPBVP for optimal lunar soft landing[J]. Chinese Space Science and Technology, 2009, 29(4): 21-27 (in Chinese). | |
| 16 | YAN H, WU H. Initial adjoint-variable guess technique and its application in optimal orbital transfer[J]. Journal of Guidance, Control, and Dynamics, 2012, 22(3): 490-492. |
| 17 | 刘玥, 荆武兴. 利用虚拟卫星法求解火星探测器近火点制动策略[J]. 哈尔滨工业大学学报, 2013, 45(1): 14-18. |
| LIU Y, JING W X. Mars probe near-center braking strategy using virtual satellite method[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 14-18 (in Chinese). | |
| 18 | LU P, GRIFFIN B J, DUKEMAN G A, et al. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance, Control, and Dynamics, 2008, 31: 1656-1664. |
| 19 | LU P, PAN B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 404-414. |
| 20 | PAN B F, PAN X, MA Y Y. A quadratic homotopy method for fuel-optimal low-thrust trajectory design[J]. Journal of Aerospace Engineering, 2019, 233(5): 1741-1757. |
| 21 | 王嘉炜,张冉,郝泽明,等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报, 2020, 41(11): 624051. |
| WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 624051 (in Chinese). | |
| 22 | VUTUKURI S, PADHI R. An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits[J]. Acta Astronautica, 2021, 188: 518-530. |
| 23 | 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术, 2020(5): 37-51, 75. |
| CUI N G, GUO D Z, LI K Y, et al. A survey of numerical methods for aircraft trajectory optimization[J]. Tactical Missile Technology, 2020(5): 37-51,75 (in Chinese). | |
| 24 | LAAD D, ELANGO P, MOHAN R. Fourier pseudospectral method for trajectory optimization with stability requirements[J]. Journal of Guidance, Control, and Dynamics, 2020, 43: 2073-2090. |
| 25 | MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥2016 IEEE 55th Conference on Decision and Control. 2016: 3636-3641. |
| 26 | SARMAH P, CHAWLA C, PADHI R. A nonlinear approach for reentry guidance of reusable launch vehicles using model predictive static programming[C]∥2008 16th Mediterranean Conference on Control and Automation. 2008: 41-46. |
| 27 | MAITY A, PADHI R. A suboptimal guidance design using continuous-time MPSP with input inequality constraint in a hypersonic mission[C]∥18th IFAC Symposium on Automatic Control in Aerospace 2010. 2010: 160-165. |
| 28 | MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and its application to 3D impact angle constrained guidance of air-to-surface missiles[C]∥2013 American Control Conference. 2013: 4999-5004. |
| 29 | MONDAL S, PADHI R. Angle-constrained terminal guidance using quasi-spectral model predictive static programming[J]. Journal of Guidance, Control, and Dynamics, 2018, 41: 783-791. |
| 30 | 杨彬, 李爽, 刘旭, 等. 高精度火星大气制动轨迹智能高效优化方法[J]. 中国科学: 技术科学, 2020, 50(9): 1185-1199. |
| YANG B, LI S, LIU X, et al. Fast optimization method for mars high-fidelity aerobraking trajectory using a neural network[J]. SCIENTIA SINICA Technologica, 2020, 50(9): 1185-1199 (in Chinese). | |
| 31 | 邓云山, 夏元清, 孙中奇, 等. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报, 2021, 42(11): 524834. |
| DENG Y S, XIA Y Q, SUN Z Q, et al. Autonomous trajectory planning method for Mars precise landing in disturbed environment[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524834 (in Chinese). | |
| 32 | 丰志伟, 张青斌, 高兴龙, 等. 火星探测器气动外形/弹道一体化多目标优化[J]. 航空学报, 2014, 35(9): 2461-2471. |
| FENG Z W, ZHANG Q B, GAO X L, et al. Aerodynamic shape and trajectory integrated multiobjective optimization for Mars explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2461-2471 (in Chinese). | |
| 33 | 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙: 国防科技大学出版社, 1993: 229-233. |
| JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha: National University of Defense Technology Press, 1993: 229-233 (in Chinese). | |
| 34 | CERF M. Optimal injection point for launch trajectories with parametric thrust profile[J]. Acta Astronaut, 2018, 151: 752-760. |
| 35 | CURTIS H. Orbital mechanics for engineering students[M]. Oxford: Butterworth-Heinemann, 2014: 111-123. |
| 36 | CERF M. Optimal thrust level for orbit insertion[J]. Acta Astronaut, 2017, 136: 55-63. |
| 37 | PATTERSON M A, RAO A V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1): 1-37. |
| [1] | 刘明 吴姣. GNSS拒止下神经网络辅助的航天器集群协同导航投稿至:先进飞行器安全控制专栏[J]. 航空学报, 0, (): 1-0. |
| [2] | 王义宇, 张泽旭, 包为民, 袁帅, 崔祜涛. 抵近中躲避非合作目标视场的航天器轨迹规划[J]. 航空学报, 2025, 46(16): 331702-331702. |
| [3] | 安帅斌 王冠 刘君 刘凯. 吸气式高超声速飞行器在线容错轨迹规划(航天运输系统专栏)[J]. 航空学报, 0, (): 1-0. |
| [4] | 岳程斐, 张枭, 曹喜滨. 多航天器非严格守序并行装配任务规划方法[J]. 航空学报, 2025, 46(14): 331258-331258. |
| [5] | 谭天乐 史树峰. 途经点约束下模型预测与反演制导的遗传算法寻优(航天器智能控制专栏)[J]. 航空学报, 0, (): 1-0. |
| [6] | 赵浩天, 邱实, 刘明, 盖琦超, 曹喜滨. 基于全生命周期数据驱动的通讯卫星行波管退化评估方法[J]. 航空学报, 2025, 46(12): 331376-331376. |
| [7] | 谢启超 曹承钰 赵逸云 李繁飙. 基于深度强化学习调参的制导控制一体化方法(空天前沿大会增刊)[J]. 航空学报, 0, (): 1-0. |
| [8] | 王远卓 代洪华 岳晓奎. 基于实际动力学方程的飞行器准谱轨迹优化[J]. 航空学报, 0, (): 1-0. |
| [9] | 吴树范, 孙笑云, 张倩云, 沈强, 向煜. 空间惯性传感器检验质量动力学与控制研究进展[J]. 航空学报, 2025, 46(17): 331781-331781. |
| [10] | 张建福, 李连升, 陈建新, 常晔, 尹路, 韩星. “祝融号”火星车太阳敏感器设计与验证[J]. 航空学报, 2025, 46(7): 330882-330882. |
| [11] | 胡庆雷, 张姝新, 韩拓, 王青云. 相对距离剖面高阶重塑的多约束末制导律[J]. 航空学报, 2025, 46(6): 531405-531405. |
| [12] | 崔乃刚, 屈国欣, 马鑫海, 徐世昊, 韦常柱. 面对称飞行器助推段自适应预设时间/性能控制[J]. 航空学报, 2025, 46(6): 531470-531470. |
| [13] | 宋征宇. 推动航天运输系统持续创新的控制技术与挑战[J]. 航空学报, 2025, 46(6): 531446-531446. |
| [14] | 董伟, 易鑫, 张后军, 王春彦, 邓方. 攻击角度和时间精确控制的制导律设计[J]. 航空学报, 2025, 46(4): 330787-330787. |
| [15] | 刘子博, 张冉, 薛文超, 李惠峰. 考虑弹性影响的运载火箭自抗扰减载控制方法[J]. 航空学报, 2025, 46(1): 330319-330319. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学

