1 |
YU X, ZHU D Y, ZHANG J D, et al. Motion compensation algorithm based on the designing structured gram matrices method[J]. IET Radar, Sonar & Navigation, 2014, 8(3): 209-219.
|
2 |
ZHU D Y, WANG L, YU Y S, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204-208.
|
3 |
汪玲. 逆合成孔径雷达成像关键技术研究[D]. 南京: 南京航空航天大学, 2006: 18-49.
|
|
WANG L. Research on key techniques of inverse synthetic aperture radar imaging[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006: 18-49 (in Chinese).
|
4 |
WU W Z, HU P J, XU S Y, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1597-1603.
|
5 |
BERIZZI F, CORSINI G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185-1191.
|
6 |
LI X, LIU G S, NI J L. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252.
|
7 |
CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spotlight synthetic aperture radar: signal processing algorithms[M]. Boston: Artech House, 1995.
|
8 |
朱兆达, 邱晓晖, 余志舜. 用改进的多普勒中心跟踪法进行ISAR运动补偿[J]. 电子学报, 1997, 25(3): 65-69.
|
|
ZHU Z D, QIU X H, YU Z S. ISAR motion compensation using modified Doppler centroid tracking method[J]. Acta Electronica Sinica, 1997, 25(3): 65-69 (in Chinese).
|
9 |
CHEN V C, MARTORELLA M. 逆合成孔径雷达成像[M]. 胡明春, 孙俊,译.北京:国防工业出版社,2020:107-134.
|
|
CHEN V C, MARTORELLA M. Inverse synthetic aperture radar imaging[M]. HU M C, SUN J, translated. Beijing: National Defense Industry Press, 2020: 107-134 (in Chinese).
|
10 |
DENG Y, ZHANG Y H. Improved PGA algorithm based on adaptive range bins selection[C]// 2010 International Conference on Image Analysis and Signal Processing. Piscataway: IEEE Press, 2010: 232-235.
|
11 |
闫龙, 郑妍, 李颜超. 改进的机载SAR相位梯度自聚焦算法[J]. 应用科技, 2012, 39(1): 39-43.
|
|
YAN L, ZHENG Y, LI Y C. Improved algorithm of phase gradient autofocus for air-borne synthetic aperture radar[J]. Applied Science and Technology, 2012, 39(1): 39-43 (in Chinese).
|
12 |
卿吉明, 徐浩煜, 梁兴东, 等. 一种可用于实时成像的改进PGA算法[J]. 雷达学报, 2015, 4(5): 600-607.
|
|
QING J M, XU H Y, LIANG X D, et al. An improved phase gradient autofocus algorithm used in real-time processing[J]. Journal of Radars, 2015, 4(5): 600-607 (in Chinese).
|
13 |
郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用, 2019, 55(12): 20-36.
|
|
ZHENG Y P, LI G Y, LI Y. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20-36 (in Chinese).
|
14 |
MOUSAVI A, RICHARD G B. Learning to invert: Sig-nal recovery via deep convolutional networks[C]∥2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2017:2272–2276.
|
15 |
何晓萍, 沈雅云. 深度学习的研究现状与发展[J]. 现代情报, 2017, 37(2): 163-170.
|
|
HE X P, SHEN Y Y. Focus and trend of deep learning research[J]. Journal of Modern Information, 2017, 37(2): 163-170 (in Chinese).
|
16 |
张云, 穆慧琳, 姜义成, 等. 基于深度学习的雷达成像技术研究进展[J]. 雷达科学与技术, 2021, 19(5): 467-478.
|
|
ZHANG Y, MU H L, JIANG Y C, et al. Overview of radar imaging techniques based on deep learning[J]. Radar Science and Technology, 2021, 19(5): 467-478 (in Chinese).
|
17 |
DING J S, WEN L W, ZHONG C, et al. Video SAR moving target indication using deep neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 58(10): 7194-7204.
|
18 |
WEN L W, DING J S, LOFFELD O. Video SAR moving target detection using dual faster R-CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2984-2994.
|
19 |
黄少寅. 基于深度学习的高分辨雷达成像技术研究[D]. 成都: 电子科技大学, 2020.
|
|
HUANG S Y. Research on high resolution radar imaging technology based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese).
|
20 |
LIU Z, YANG S Y, FENG Z X, et al. Fast SAR autofocus based on ensemble convolutional extreme learning machine[J]. Remote Sensing, 2021, 13(14): 2683.
|
21 |
CHEN J L, YU H W, XU G, et al. Airborne SAR autofocus based on blurry imagery classification[J]. Remote Sensing, 2021, 13(19): 3872.
|
22 |
TANG W, QIAN J, WANG L, et al. SAR image autofocusing based on Res-Unet[C]∥IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2022: 2971-2974.
|
23 |
HU C Y, WANG L, LI Z, et al. Inverse synthetic aperture radar imaging using a fully convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1203-1207.
|
24 |
HU C, WANG L, LI Z, et al. A novel inverse synthetic aperture radar imaging method using con-volutional neural networks [C]∥5th International Workshop on Compressed Sensing Applied to Radar, Multimodal Sensing, and Imaging (CoSeRa). Piscataway: IEEE Press 2018: 1-5.
|
25 |
YUAN Y X, LUO Y, KANG L, et al. Range alignment in ISAR imaging based on deep recurrent neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
26 |
SHI H Y, LIU Y, GUO J W, et al. ISAR autofocus imaging algorithm for maneuvering targets based on deep learning and keystone transform[J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1178-1185.
|
27 |
WANG L, LOFFELD K, MA K, et al. Sparse ISAR im-aging using a greedy Kalman filtering approach[J]. Signal Processing, 2017,138:1-10.
|
28 |
汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846-852.
|
|
WANG L, ZHU D Q, MA K L, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics & Information Technology, 2018, 40(4): 846-852 (in Chinese).
|
29 |
BACCI A, GIUSTI E, CATALDO D, et al. ISAR resolution enhancement via compressive sensing: a comparison with state of the art SR techniques[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). Piscataway: IEEE Press, 2016: 227-231.
|
30 |
WANG L, LOFFELD O. ISAR imaging using a null space ℓ1 minimizing Kalman filter approach[C]∥2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). Piscataway: IEEE Press, 2016: 232-236.
|
31 |
吴东, 郝明. 基于图像对比度的舰船目标成像算法[J]. 电子测量技术, 2017, 40(12): 110-116.
|
|
WU D, HAO M. New ISAR imaging interval selection method for ship targets on sea based on imaging contrast[J]. Electronic Measurement Technology, 2017, 40(12): 110-116 (in Chinese).
|