收稿日期:2024-10-28
修回日期:2024-11-19
接受日期:2024-12-25
出版日期:2025-01-08
发布日期:2025-01-07
通讯作者:
宋征宇
E-mail:zycalt12@sina.com
基金资助:Received:2024-10-28
Revised:2024-11-19
Accepted:2024-12-25
Online:2025-01-08
Published:2025-01-07
Contact:
Zhengyu SONG
E-mail:zycalt12@sina.com
Supported by:摘要:
航天运输系统已支撑中国完成了载人航天和探月工程等多项航天重大工程任务,在未来高密度发射和航班化需求愈发强烈的大背景下,对运载火箭的研制效率、适应能力、综合性能等方面提出了更高的要求。控制技术能够在这一发展进程中发挥重要作用,并且从理论方法层面持续创新控制技术,相较于其他技术途径是十分经济高效的解决方案。从3个方面归纳了航天运输系统控制技术面临的前沿难题,包括制导与轨迹规划一体化设计、全域不确定下的强适应控制、以及面向低温流体传输的主动流型控制等。针对前2项技术,讨论了其内涵、必要性、在长征火箭中的研究应用现状以及未来的发展方向;针对第3项技术,提出了基于多学科交叉解决方案下自主控制的技术路线。提出的这些挑战由于没有好的解决方案而曾一度被忽视,限制了火箭性能的进一步提升;通过技术的突破,将有望推动航天运输系统的发展跃上新台阶。
中图分类号:
宋征宇. 推动航天运输系统持续创新的控制技术与挑战[J]. 航空学报, 2025, 46(6): 531446.
Zhengyu SONG. Promoting continuous innovation in space transportation systems: Control technologies and challenges[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531446.
表 2
飞行控制面临的问题
| 因素 | 问题 |
|---|---|
| 弹性控制 | ①仅用1~2阶模态不足以表征火箭的特性 ②模型参数取值只有大致范围,且随时间变化很大 ③若取消模态试验完全依靠数值仿真计算模态特性,误差将进一步放大 ④低频与刚体频率接近时,惯性测量信息将会受到“污染”,不足以反应刚体的运动特性和飞行状态 |
| 晃动控制 | ①推进剂晃动频率随着箭体直径的增大而降低 ②若晃幅增大,有可能导致发动机提前关机;并呈现非线性的晃动特性,这区别于弹簧振子模型,且该特性还未被很好地理解 |
| 减载控制 | ①过载与风攻角均会导致气动载荷增大 ②减载需求往往与制导指令跟踪精度甚至飞行稳定性相矛盾 ③缺乏适用于火箭飞行剖面的攻角传感器 |
| 气动控制 | ①风洞试验无法模拟火箭完整的飞行剖面 ②火箭快速穿越不同的高度,在每一高度没有足够的停留时间,且每次飞行剖面也不一样,难以在飞行过程中在线辨识参数 |
表 3
现代控制方法面临的问题
| 因素 | 问题 |
|---|---|
| H∞优化 | 考虑了最坏情况,但对绝大部分工况而言,设计可能偏于保守 |
| 模型参考自适应控制 | 随着质量的消耗,火箭模型特性变化很大;考虑刚体模型的居多,虽然近年来出现了一些考虑1~2阶低阶弹性模态的方法,但需要先验的模型参数,对更多模态的适应性还未得到验证 |
| L1自适应输出反馈控制 | 面临模型参考自适应控制相同的问题,是否能有效处理减载需求还待研究 |
| 滑模控制 | 要求传感器的信息是准确的,这很难适应存在弹性模态的情况。采用滑模观测器是解决措施之一,但需要模态参数的先验信息,且对这些信息的准确度要求较高 |
| 非线性动态逆 | 需要系统的完整状态或者以某种方式近似描述该系统;若系统模型仅部分已知,则需要首先识别系统模型,在考虑弹性模态时难以保证传感器有足够的精度 |
| 反步控制 | 需系统模型的完整知识;刚体的状态变量及其微分信号将受到弹性模态的影响;若考虑“刚性-弹性”特征的完整模型,状态变量的微分可能会导致“复杂度暴增” |
| 1 | 姜杰. 长征三号甲系列运载火箭高适应性发展: 从总体与导航制导控制的视角[J]. 宇航总体技术, 2023, 7(2): 23-26. |
| JIANG J. High adaptability development of LM-3A series launch vehicles: From the aspects of vehicle system and its guidance & navigation control[J]. Astronautical Systems Engineering Technology, 2023, 7(2): 23-26 (in Chinese). | |
| 2 | 吕新广, 宋征宇. 载人运载火箭迭代制导方法应用研究[J]. 载人航天, 2009, 15(1): 9-14. |
| LU X G, SONG Z Y. Study of the iterative guidance engineering application to manned launch vehicle[J]. Manned Spaceflight, 2009, 15(1): 9-14 (in Chinese). | |
| 3 | 孙艳秋, 吴庆军, 张硕, 等. 面向零窗口发射的全冗余一体化测发控系统[J]. 导弹与航天运载技术, 2022(1): 53-58. |
| SUN Y Q, WU Q J, ZHANG S, et al. Integrated measurement control and launch system with full redundancy for zero-window launching[J]. Missiles and Space Vehicles, 2022(1): 53-58 (in Chinese). | |
| 4 | 李学锋, 尚腾, 苏磊, 等. 新一代大型运载火箭长征五号控制技术[J]. 导弹与航天运载技术, 2021(5): 58-65. |
| LI X F, SHANG T, SU L, et al. Control technology of new generation large launch vehicle long March 5[J]. Missiles and Space Vehicles, 2021(5): 58-65 (in Chinese). | |
| 5 | HU H F PAN H, HE Y, et al. Autonomous control technologies of the new generation launch vehicle[J]. Aerospace China, 2021, 22(2): 25-34. |
| 6 | 邢林峰, 李一冰. 日本“瞳”卫星失败的启示[C]∥中国宇航学会先进小卫星技术与应用专业委员会第一届学术交流会暨第四届小卫星技术交流会, 2017. |
| 7 | 徐丹丹, 雷宁, 杨亦婷. 织女星火箭固体发动机研制故障综述[J]. 固体火箭技术, 2021, 44(3): 311-320. |
| XU D D, LEI N, YANG Y T. Summary of failures in the development of solid rocket motor for Vega launch vehicle[J]. Journal of Solid Rocket Technology, 2021, 44(3): 311-320 (in Chinese). | |
| 8 | 隋阳, 杨开. 欧洲阿里安-6新型主力火箭完成首飞[J]. 国际太空, 2024(8): 10-16. |
| SUI Y, YANG K. European Ariane-6 new main rocket completed its first flight[J]. Space International, 2024(8): 10-16 (in Chinese). | |
| 9 | 龙雪丹, 杨开. 猎鹰-9火箭二子级故障情况分析[J]. 国际太空, 2024(9): 14-18. |
| LONG X D, YANG K. Fault analysis of Falcon-9 rocket secondary stage[J]. Space International, 2024(9): 14-18 (in Chinese). | |
| 10 | 余梦伦. 液体火箭弹道设计[M]∥余梦伦院士文集. 北京: 中国宇航出版社, 2019: 68. |
| YU M L. Liquid rocket ballistic design[M]∥Collected Works of Academician Yu Menglun. Beijing: China Astronautic Publishing House, 2019: 68 (in Chinese). | |
| 11 | GOODMAN J. Helmut horn and the origin of the Saturn V iterative guidance mode (IGM): AIAA-2021-2020[R]. Reston: AIAA, 2021. |
| 12 | GOODMAN J. Roland jaggers and the development of space shuttle powered explicit guidance (PEG)[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
| 13 | SONG Z Y, ZHAO D J, THEIL S. Autonomous trajectory planning and guidance control for launch vehicles[M]. Berlin: Springer Nature, 2023: 36-41. |
| 14 | PORTEN P V D, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for space launch system block-1 and block-1B vehicles[C]∥AAS GNC (Guidance, Navigation, and Control) Conference. San Francisco: AAS, 2018. |
| 15 | 宋征宇. 从准确、精确到精益求精: 载人航天推动运载火箭制导方法的发展[J]. 航天控制, 2013, 31(1): 4-10, 31. |
| SONG Z Y. From accurate, precise to perfect-manned space promotes the development of guidance method on launch vehicle[J]. Aerospace Control, 2013, 31(1): 4-10, 31 (in Chinese). | |
| 16 | 施国兴, 吕新广, 巩庆海. 满足多终端约束的二次曲线迭代制导方法研究[J]. 中国空间科学技术, 2018, 38(2): 24-31. |
| SHI G X, LYU X G, GONG Q H. Research on quadratic curve IGM for multi-terminal constraints[J]. Chinese Space Science and Technology, 2018, 38(2): 24-31 (in Chinese). | |
| 17 | 何勇, 王健, 宋征宇, 等. 自适应预测补偿的迭代制导方法及其应用研究[J]. 宇航学报, 2022, 43(6): 762-771. |
| HE Y, WANG J, SONG Z Y, et al. Study and application of iterative guidance algorithm with adaptive prediction and compensation[J]. Journal of Astronautics, 2022, 43(6): 762-771 (in Chinese). | |
| 18 | SONG Z Y, LIU Y, HE Y, et al. Autonomous mission reconstruction during the ascending flight of launch vehicles under typical propulsion system failures[J]. Chinese Journal of Aeronautics, 2022, 35(6): 211-225. |
| 19 | WANG C, SONG Z Y. Powered-coast-powered guidance reconfiguration method of launch vehicle with thrust drop fault[J]. Guidance, Navigation and Control, 2022, 2(1): 2250003. |
| 20 | SONG Z Y, WANG C, GONG Q H. Joint dynamic optimization of the target orbit and flight trajectory of a launch vehicle based on state-triggered indices[J]. Acta Astronautica, 2020, 174: 82-93. |
| 21 | SONG Z. The development of autonomous dynamic trajectory optimization control of launch vehicles[J]. Aerospace China, 2020, 21(2): 5-15. |
| 22 | 王聪, 王劲博, 宋征宇. 登月火箭剩余运载能力估计与停泊轨道重规划[J]. 宇航学报, 2023, 44(9): 1317-1328. |
| WANG C, WANG J B, SONG Z Y. Residual carrying capacity evaluation and parking orbit re-planning for lunar exploration launch vehicle[J]. Journal of Astronautics, 2023, 44(9): 1317-1328 (in Chinese). | |
| 23 | 宋征宇, 巩庆海, 王聪, 等. 长征运载火箭上升段的自主制导方法及其研究进展[J]. 中国科学: 信息科学, 2021, 51(10): 1587-1608. |
| SONG Z Y, GONG Q H, WANG C, et al. Review and progress of the autonomous guidance method for Long March launch vehicle ascent flight[J]. Scientia Sinica (Informationis), 2021, 51(10): 1587-1608 (in Chinese). | |
| 24 | LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193. |
| 25 | XU Y W, LI D W, XI Y G, et al. An improved predictive controller on the FPGA by hardware matrix inversion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7395-7405. |
| 26 | 谭述君, 何骁, 张立勇, 等. 运载火箭推力故障下基于智能决策的在线轨迹重规划方法[J]. 宇航学报, 2021, 42(10): 1228-1236. |
| TAN S J, HE X, ZHANG L Y, et al. Online trajectory replanning method based on intelligent decision-making for launch vehicles under thrust drop failure[J]. Journal of Astronautics, 2021, 42(10): 1228-1236 (in Chinese). | |
| 27 | Horn J F, Schmidt E M, Geiger B R, et al. Neural network-based trajectory optimization for unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 548-562. |
| 28 | SHI J L, WANG J B, SU L F, et al. A neural network warm-started indirect trajectory optimization method[J]. Aerospace, 2022, 9(8): 435. |
| 29 | SONG Z Y, PAN H, SHAO M H. Responsive tolerant control: an approach to extend adaptability of launch vehicles[J]. Progress in Aerospace Sciences, 2024, 149: 101028. |
| 30 | 潘豪, 胡瑞光, 宋征宇, 等. 推力矢量极性错误下的飞行控制自主重构技术[J]. 中国科学: 信息科学, 2022, 52(5): 870-889. |
| PAN H, HU R G, SONG Z Y, et al. Autonomous reconfiguration of flight control under thrust vector polarity errors[J]. Scientia Sinica (Informationis), 2022, 52(5): 870-889 (in Chinese). | |
| 31 | 潘豪, 王光辉, 邵梦晗, 等. 基于ESO的运载火箭姿控喷管故障辨识设计及实现[J]. 导弹与航天运载技术, 2021(1): 72-75. |
| PAN H, WANG G H, SHAO M H, et al. Design and implementation of fault identification for attitude control nozzle of launch vehicle based on ESO[J]. Missiles and Space Vehicles, 2021(1): 72-75 (in Chinese). | |
| 32 | SIMPLÍCIO P, MARCOS A. New control functionalities for launcher load relief in ascent and descent flight[C]∥8th European Conference for Aeronautics and Aerospace Sciences. Paris: EUCASS, 2019. |
| 33 | SONG Z Y, PAN H, XU S S, et al. Comprehensive load relief of launch vehicle with the constraints of legacy stages[J]. AIAA Journal, 2022, 60(8): 4991-5003. |
| 34 | 吴素春, 贾文成, 邱吉宝. 载人运载火箭全箭模态试验[J]. 宇航学报, 2005, 26(5): 531-534, 570. |
| WU S C, JIA W C, QIU J B. Integrated modal test for the manned launch vehicle[J]. Journal of Astronautics, 2005, 26(5): 531-534, 570 (in Chinese). | |
| 35 | 贾文成, 王鹏辉, 张永亮. 新一代大型火箭全箭模态试验[J]. 强度与环境, 2017, 44(2): 1-9. |
| JIA W C, WANG P H, ZHANG Y L. Modal test technology for the new large launch vehicle[J]. Structure & Environment Engineering, 2017, 44(2): 1-9 (in Chinese). | |
| 36 | 邵梦晗, 胡海峰, 潘豪, 等. 一种运载火箭弹性自主辨识与自适应控制方法[J]. 宇航学报, 2023, 44(12): 1916-1924. |
| SHAO M H, HU H F, PAN H, et al. A method for elastic autonomous identification and adaptive control of launch vehicles[J]. Journal of Astronautics, 2023, 44(12): 1916-1924 (in Chinese). | |
| 37 | 袁赫, 李静琳, 宋征宇, 等. 运载火箭飞行载荷联合优化控制技术[J]. 宇航学报, 2022, 43(10): 1291-1301. |
| YUAN H, LI J L, SONG Z Y, et al. Joint optimal control technology of launch vehicle flight load[J]. Journal of Astronautics, 2022, 43(10): 1291-1301 (in Chinese). | |
| 38 | 赵永志, 张普卓, 杜昊昱, 等. 面对称运载火箭优势面滚转迎风技术[J]. 国防科技大学学报, 2024, 46(3): 88-97. |
| ZHAO Y Z, ZHANG P Z, DU H Y, et al. Preferred plane bank-to-wind technology for plane-symmetric launch vehicle[J]. Journal of National University of Defense Technology, 2024, 46(3): 88-97 (in Chinese). |
| [1] | 王义宇 张泽旭 包为民 袁帅 崔祜涛. 抵近中躲避非合作目标视场的航天器轨迹规划[J]. 航空学报, 0, (): 1-0. |
| [2] | 董伟, 易鑫, 张后军, 王春彦, 邓方. 攻击角度和时间精确控制的制导律设计[J]. 航空学报, 2025, 46(4): 330787-330787. |
| [3] | 杨敏, 刘关俊, 周子渊. 基于安全强化学习的月球着陆器控制[J]. 航空学报, 2025, 46(3): 630553-630553. |
| [4] | 李佳兴, 袁利, 张聪. 天基单视线测量目标轨道可观性分析及确定方法[J]. 航空学报, 2025, 46(3): 629484-629484. |
| [5] | 张得阳, 郑然, 程会艳, 孟小迪, 齐静雅, 李林, 林大泳. 一种提升空间暗弱目标探测灵敏度的方法[J]. 航空学报, 2025, 46(3): 629944-629944. |
| [6] | 刘子博, 张冉, 薛文超, 李惠峰. 考虑弹性影响的运载火箭自抗扰减载控制方法[J]. 航空学报, 2025, 46(1): 330319-330319. |
| [7] | 王曦, 陈长青, 徐小平, 黄震. 头尾交替对日连续偏航姿态控制策略[J]. 航空学报, 2025, 46(1): 330673-330673. |
| [8] | 崔乃刚 屈国欣 马鑫海 徐世昊 韦常柱. 面对称飞行器助推段自适应预设时间/性能控制[J]. 航空学报, 0, (): 1-0. |
| [9] | 南子寒, 刘大禹, 董明, 梁文宁, 赵雪薇, 马伊琳, 关瑶. GNSS拒止下多源自主导航鲁棒滤波方法[J]. 航空学报, 2024, 45(S1): 730782-730782. |
| [10] | 高煜欣, 张绍杰, 刘春生. 网络攻击下导弹自适应事件触发制导律[J]. 航空学报, 2024, 45(S1): 730892-730892. |
| [11] | 岳程斐 张枭 曹喜滨. 多航天器非严格守序并行装配任务规划方法[J]. 航空学报, 0, (): 1-0. |
| [12] | 胡庆雷, 张姝新, 韩拓, 王青云. 相对距离剖面高阶重塑的多约束末制导律[J]. 航空学报, 2025, 46(6): 531405-531405. |
| [13] | 王路桥, 王璐, 庄慧盈, 吴磊, 李青山, 田恒宇. 约束分级的飞行器任务指令序列编排方法[J]. 航空学报, 2024, 45(20): 630445-630445. |
| [14] | 高兵, 张哲婕, 邹启杰, 刘治国, 赵锡玲. 基于深度强化学习和信息论的多智能体通信方法[J]. 航空学报, 2024, 45(18): 329862-329862. |
| [15] | 陈雪芹, 杨伯毓, 吴凡, 岳程斐, 曹喜滨. 基于l1-TSXKF的航天器姿控系统状态偏差估计[J]. 航空学报, 2024, 45(16): 329678-329678. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学


