1 |
STARKEY R, LEWIS R, JONES C. Plasma telemetry in hypersonic flight[C]∥International Telemetering Conference, 2002: 2-15.
|
2 |
HARTUNIAN R, STEWART G, FERGASON S,et al. Causes and mitigation of Radio Frequency (RF) blackout during reentry of reusable launch vehicles: ATR-2007(5309)-1[R]. El Segundo: Aerospace Corporation, 2007.
|
3 |
RUSCH W, YEH C. Scattering by an infinite cylinder coated with an inhomogeneous and anisotropic plasma sheath[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(3): 452-457.
|
4 |
SWIFT C T, BECK F B, THOMSON J, et al. RAM C-Ⅲ S-band diagnostic experiment: N71-21101[R]. Washington, D.C.: NASA, 1971.
|
5 |
LAROUSSI M, ROTH J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Transactions on Plasma Science, 1993, 21(4): 366-372.
|
6 |
USUI H, MATSUMOTO H, YAMASHITA F, et al. Computer experiments on radio blackout of a reentry vehicle[C]∥6th Spacecraft Charging Technology, 1998: 107-110.
|
7 |
LUEBBERS R, STEICH D, KUNZ K. FDTD calculation of scattering from frequency-dependent materials[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1249-1257.
|
8 |
SOTNIKOV V I, PARASCHIV I, MAKHIN V, et al. Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid model[J]. Physics of Plasmas, 2002, 9(3): 913-922.
|
9 |
SCHULER K, BECKER D, WIESBECK W. Extraction of virtual scattering centers of vehicles by ray-tracing simulations[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3543-3551.
|
10 |
于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713-719.
|
|
YU Z F, LIU J Q, LIU L Y, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 2014, 35(6): 713-719 (in Chinese).
|
11 |
于哲峰, 梁世昌, 部绍清, 等. 超高速目标及其绕流场雷达散射模拟与分析[J]. 电波科学学报, 2013, 28(6): 1076-1081.
|
|
YU Z F, LIANG S C, BU S Q, et al. Simulation and analysis on the radar scattering of hypervelocity object and its flow field[J]. Chinese Journal of Radio Science, 2013, 28(6): 1076-1081 (in Chinese).
|
12 |
于哲峰, 孙良奎, 马平, 等. 气动电磁学概念探讨及若干研究进展介绍[J]. 空气动力学学报, 2018, 36(5): 729-735.
|
|
YU Z F, SUN L K, MA P, et al. Discussion about the concept of aero-electromagnetics and introduction of typical research progress[J]. Acta Aerodynamica Sinica, 2018, 36(5): 729-735 (in Chinese).
|
13 |
马平, 石安华, 杨益兼, 等. 高超声速球模型及流场光辐射和电磁散射特性测量[J]. 兵工学报, 2017, 38(6): 1223-1230.
|
|
MA P, SHI A H, YANG Y J, et al. Measurement of ray radiation and electromagnetic scattering from hypersonic sphere models and their flow fields in ballistic range[J]. Acta Armamentarii, 2017, 38(6): 1223-1230 (in Chinese).
|
14 |
马平, 石安华, 杨益兼, 等. 高速模型尾迹流场及其电磁散射特性相似性实验研究[J]. 物理学报, 2017, 66(10): 102401.
|
|
MA P, SHI A H, YANG Y J, et al. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model[J]. Acta Physica Sinica, 2017, 66(10): 102401 (in Chinese).
|
15 |
马平, 韩一平, 张宁, 等. 高超声速类HTV2模型全目标电磁散射特性实验研究[J]. 物理学报, 2022, 71(8): 084101.
|
|
MA P, HAN Y P, ZHANG N, et al. Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model[J]. Acta Physica Sinica, 2022, 71(8): 084101 (in Chinese).
|
16 |
吴明兴, 田得阳, 唐璞, 等. 高超声速模型尾迹电子密度二维分布反演方法[J]. 物理学报, 2022, 71(11): 115202.
|
|
WU M X, TIAN D Y, TANG P, et al. Inversion method of two-dimensional distribution of electron density in hypersonic model wake[J]. Acta Physica Sinica, 2022, 71(11): 115202 (in Chinese).
|
17 |
聂亮, 陈伟芳, 夏陈超, 等. 高超声速飞行器绕流流场电磁散射特性分析[J]. 电波科学学报, 2014, 29(5): 874-879, 956.
|
|
NIE L, CHEN W F, XIA C C, et al. Analysis of scattering for the flow field of a hypersonic flight vehicle[J]. Chinese Journal of Radio Science, 2014, 29(5): 874-879, 956 (in Chinese).
|
18 |
莫锦军. 隐身目标低频宽带电磁散射特性研究[D]. 长沙: 国防科技大学, 2004: 70-134.
|
|
MO J J. Study on wideband electromagnetic characteristics of stealth targets in low frequency[D]. Changsha: National University of Defense Technology, 2004: 70-134 (in Chinese).
|
19 |
周超, 张小宽, 张晨新, 等. 再入段等离子体对弹头RCS的影响研究[J]. 现代雷达, 2014, 36(3): 83-86.
|
|
ZHOU C, ZHANG X K, ZHANG C X, et al. A study on the influence on warhead RCS of plasma parameters in the reentry phase[J]. Modern Radar, 2014, 36(3): 83-86 (in Chinese).
|
20 |
梁世昌, 于哲峰, 张志成, 等. 开槽钝锥体及等离子体鞘套的RCS特性研究[J]. 实验流体力学, 2013, 27(2): 19-23.
|
|
LIANG S C, YU Z F, ZHANG Z C, et al. Research on the RCS characteristics of blunt-cone with slots and plasma sheath[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 19-23 (in Chinese).
|
21 |
孟贵平. 再入体的电磁散射特性分析及算法研究[D]. 南京: 南京大学, 2019: 22-58.
|
|
MENG G P. Re-entry body electromagnetic scattering characteristics analysis and algorithm research[D]. Nanjing: Nanjing University, 2019: 22-58 (in Chinese).
|
22 |
赵泽康. 高超声速目标在等离子体湍流中电磁散射特性研究[D]. 西安: 西安电子科技大学, 2020: 43-62.
|
|
ZHAO Z K. Electromagnetic scattering characteristics of hypersonic target in plasma turbulence[D]. Xi’an: Xidian University, 2020: 43-62 (in Chinese).
|
23 |
牛戈钊, 刘彦明, 高澜, 等 .等离子鞘套包覆钝锥的双站极化散射特性[J].航空学报, 2022, 43(S2): 727722.
|
|
NIU G Z, LIU Y M, GAO L, et al. Bistatic polarization scattering characteristic of plasma-sheath-covered blunt cone[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727722 (in Chinese).
|
24 |
YEE K E. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
|
25 |
杨阳. 电磁场时域有限差分数值方法的研究[D]. 南京: 南京理工大学, 2005: 1-2.
|
|
YANG Y. The research on the finite difference time domain methods in the electromagnetic fields[D]. Nanjing: Nanjing University of Science and Technology, 2005: 1-2 (in Chinese).
|
26 |
常雨. 超声速/高超声速等离子体流场数值模拟及其电磁特性研究[D]. 长沙: 国防科技大学, 2009: 74-93.
|
|
CHANG Y. Numerical simulation of supersonic/hypersonic plasma flow field and electromagnetic characteristics[D]. Changsha: National University of Defense Technology, 2009: 74-93 (in Chinese).
|
27 |
YANG L X. 3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method[J]. International Journal of Infrared and Millimeter Waves, 2007, 28(7): 557-565.
|