[1] 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over blunt nosetipped bodies: Experiment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). [2] 袁湘江, 沙心国, 时晓天, 等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报, 2020, 41(11): 123791. YUAN X J, SHA X G, SHI X T, et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123791 (in Chinese). [3] 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). [4] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. [5] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects: AIAA-2015-2474[R]. Reston: AIAA, 2015. [6] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1): 193-202. [7] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4): 583-619. [8] CODER J G. Enhancement of the amplification factor transport transition modeling framework: AIAA-2017-1709[R]. Reston: AIAA, 2017. [9] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. ZHANG Y F, HE K, ZHANG Y R, et al. Improvement and validation of menter’s transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402 (in Chinese). [10] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. YUAN X X, HE K, CHEN J Q, et al.Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese). [11] KRAUSE M, BEHR M, BALLMANN J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model: AIAA-2008-2598[R]. Reston: AIAA, 2008. [12] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtry’s transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3): 249-257. [13] XIA C C, CHEN W F. Boundary-Layer transition prediction using a simplified correlation-based model[J]. Chinese Journal of Aeronautics, 2016, 29(1): 66-75. [14] FRAUHOLZ S, REINARTZ B U, MüLLER S, et al. Transition prediction for scramjets using γ-Reθ t model coupled to two turbulence models[J]. Journal of Propulsion and Power, 2015, 31(5): 1404-1422. [15] WANG Y T, LI Y W, XIAO L H, et al. Similarity-solution-based improvement of γ-Reθ t model for hypersonic transition prediction[J]. International Journal of Heat and Mass Transfer, 2018, 124: 491-503. [16] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Science, 2012, 58: 36-59. [17] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187. [18] 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese). [19] XU J K, BAI J Q, FU Z Y, et al. Parallel compatible transition closure model for high-speed transitional flow[J]. AIAA Journal, 2017, 55(9): 3040-3050. [20] SHI M T, ZHU W K, LEE C B. Engineering model for transition prediction based on a hypersonic quiet wind tunnel[J]. AIAA Journal, 2020, 58(8): 3476-3485. [21] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的 γ-Reθ 转捩模型[J]. 航空学报, 2019, 40(8): 122726. YI M R, ZHAO H Y, LE J L, et al . γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122726 (in Chinese). [22] ECKERT E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the American Society of Mechanical Engineers, 1956, 78(6): 1273. [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [24] NIE S Y, KRIMMELBEIN N, KRUMBEIN A, et al. Coupling of a Reynolds stress model with γ-Reθ t transition model[J]. AIAA Journal, 2018, 56(1): 146-157. [25] MEE D. Boundary-layer transition measurements in hypervelocity flows in a shock tunnel[J]. AIAA Journal, 2002, 40(8): 1542-1548. [26] CHEN F, MALIK M R, BECKWITH I E. Boundary-layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6): 687-693. [27] SINGER B A, DINAVAHI S P, VENKIT I. Testing of transition-region models: test cases and data: NASA CR 4371[R]. Washington, D.C.: NASA, 1991. [28] 刘周, 龚安龙, 杨云军, 等. 基于 γ-Reθ 转捩模型的尖锥超声速流动转捩模拟[C]//第十七届全国高超声速气动力/热学术交流会, 2013. LIU Z, GONG A L, YANG Y J, et al. Supersonic flow transition simulations of sharp cone using γ-Reθ transition model[C]//17th National Hypersonic Aerodynamics/Heat Symposium Proceeding, 2013 (in Chinese). [29] HORVATH T J, BERRY S A, HOLLIS B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels: AIAA-2002-2743[R]. Reston: AIAA, 2002. |