1 |
荆涛, 田锡天. 基于蒙特卡洛-自适应差分进化算法的飞机容差分配多目标优化方法[J]. 航空学报, 2022, 43(3): 425278.
|
|
JING T, TIAN X T. Multi-objective optimization method for aircraft tolerance allocation based on Monte Carlo-adaptive differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 425278 (in Chinese).
|
2 |
唐成顺,孙丹,唐威,等 .基于LSTM循环神经网络的汽轮机转子表面应力预测模型[J].中国电机工程学报,2021, 41(2): 451-460.
|
|
TANG C S, SUN D, TANG W, et al. A turbine rotor surface stress prediction model based on LSTM recurrent neural network[J]. Proceedings of the CSEE, 2021, 41(2): 451-460 (in Chinese).
|
3 |
袁泓磊,李尚平,李向辉,等 .基于深度学习模型的甘蔗转运车节点应力预测[J].装备制造技术,2020(4): 1-4.
|
|
YUAN H L, LI S P, LI X H, et al. Stress prediction of key nodes of sugarcane transport vehicle based on deep learning[J].Equipment Manufacturing Technology, 2020(4): 1-4 (in Chinese).
|
4 |
GULGEC N, TAKAC M, PAKZAD S. Innovative sensing by using deep learning framework[C]∥Dynamics of Civil Structures, Volume 2 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017. 2017: 293-300.
|
5 |
HUANG R J, WEI C J, WANG B H, et al. Well performance prediction based on Long Short-Term Memory (LSTM) neural network[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part D): 109686.
|
6 |
MA Y H, DU X, SUN X M. Adaptive modification of the turbofan engine nonlinear model based on LSTM neural networks and hybrid optimization method[J]. Chinese Journal of Aeronautics, 2021, 1-23.Avilable from:.
|
7 |
HAJIAGHAYI M, VAHEDI E. Code failure prediction and pattern extraction using LSTM networks[C]∥ 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (Big Data Service). Newark: Institute for Electrical and Electronic Engineers, 2019: 55-62.
|
8 |
ZHANG Y. Aeroengine fault prediction based on bidirectional LSTM neural network[C]∥ 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Piscataway, NJ: IEEE Press, 2020: 317-320.
|
9 |
PAN D W, SONG Z, NIE L Q, et al. Satellite telemetry data anomaly detection using Bi-LSTM prediction based model[C]∥ 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Piscataway, NJ: IEEE Press, 2020: 1-6.
|
10 |
车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.
|
|
CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312 (in Chinese).
|
11 |
BIAN C, HE H L, YANG S K. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries[J]. Energy, 2020, 191: 116538.
|
12 |
LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5470-5480.
|
13 |
QUE Z Q, LIU Y Y, GUO C, et al. Real-time anomaly detection for flight testing using AutoEncoder and LSTM[C]∥ 2019 International Conference on Field-Programmable Technology (ICFPT). Piscataway, NJ: IEEE Press, 2019: 379-382.
|
14 |
LI D Z, YAN M J, MIAO Z W, et al. LSTM neural network based tensile stress prediction of rubber streching[C]∥ 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway, NJ: IEEE Press, 2020: 1-5.
|
15 |
SUN Q, TANG Z, GAO J P, et al. Short-term ship motion attitude prediction based on LSTM and GPR[J]. Applied Ocean Research, 2022, 118: 102927.
|
16 |
YAO W Y, HUANG P, JIA Z X. Multidimensional LSTM networks to predict wind speed [C]∥ 2018 37th Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2018: 7493-7497.
|
17 |
DU Y, CUI N X, LI H X, et al. The vehicle’s velocity prediction methods based on RNN and LSTM neural network[C]∥ 2020 Chinese Control and Decision Conference (CCDC). Piscataway, NJ: IEEE Press, 2020: 99-102.
|
18 |
MA J Y, LUO D C, LIAO X P, et al. Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning[J]. Measurement, 2020, 173(1): 108554.
|
19 |
CUI Z Y, KE R M, PU Z Y, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values [J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102674.
|
20 |
SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]∥ 2019 IEEE International Conference on Big Data (Big Data). Piscataway, NJ: IEEE Press, 2019: 3285-3292.
|
21 |
KENNEDY J, EBERHART R. Particle swarm optimization [C]∥ Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995: 1942-1948.
|
22 |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222 -2232.
|