1 |
李潮隆, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075.
|
|
LI C L, XIA Z X, MA L K, et al. Experiment on performance of solid rocket scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126075 (in Chinese).
|
2 |
余家泉, 许进升, 陈雄, 等. 推进剂/包覆层界面脱粘率相关特性研究[J]. 航空学报, 2015, 36(12): 3861-3867.
|
|
YU J Q, XU J S, CHEN X, et al. Rate-dependent property of propellant and inhibitor interface debonding[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3861-3867 (in Chinese).
|
3 |
RICHTER H P, BOYER L R, GRAHAM K J . et al . Shock sensitivity of damaged energetic materials[C]∥Proceedings of the Ninth Symposium (International) on Detonation, 1989: 1295-1300.
|
4 |
ZHANG T H, BAI Y L, WANG S Y, et al. Damage of a high-energy solid propellant and its deflagration-to-detonation transition[J]. Propellants, Explosives, Pyrotechnics, 2003, 28(1): 37-42.
|
5 |
BENCHER C D, DAUSKARDT R H, RITCHIE R O. Microstructural damage and fracture processes in a composite solid rocket propellant[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 328-334.
|
6 |
HOU Y F, XU J S, ZHOU C S, et al. Microstructural simulations of debonding, nucleation, and crack propagation in an HMX-MDB propellant[J]. Materials & Design, 2021, 207: 109854.
|
7 |
刘新国, 刘佩进, 强洪夫. 复合固体推进剂脱湿研究进展[J]. 固体火箭技术, 2018, 41(3): 313-318, 337.
|
|
LIU X G, LIU P J, QIANG H F. Recent advances on research of the dewetting in composite solid propellants[J]. Journal of Solid Rocket Technology, 2018, 41(3): 313-318, 337 (in Chinese).
|
8 |
ROTHON R. Particulate-filled polymer composites[M]. London: Longman Group Limited, 2002: 457-462.
|
9 |
RAE P J. Quasi-static studies of the deformation, strength and failure of polymer-bonded explosives[D]. Cambridge: University of Cambridge, 2002.
|
10 |
RAE P J, PALMER S J P, GOLDREIN H T, et al. Quasi⁃static studies of the deformation and failure of PBX 9501[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2025): 2227-2242.
|
11 |
IDE K M, HO S, WILLIAMS D R G. Fracture behaviour of accelerated aged solid rocket propellants[J]. Journal of Materials Science, 1999, 34: 4209-4218.
|
12 |
王亚平, 王北海. 丁羟推进剂拉伸脱湿的电子显微镜观测[J]. 固体火箭技术, 1998, 21(2): 71-74.
|
|
WANG Y P, WANG B H. Study on dewetting and fracture behavior of HTPB propellants by SEM[J]. Journal of Solid Rocket Technology, 1998, 21(2): 71-74 (in Chinese).
|
13 |
宋丹平. 固体推进剂细观力学与本构关系研究[D]. 武汉: 武汉理工大学, 2008.
|
|
SONG D P. Research on the micro-mechanics and constitutive relation for solid propellant[D]. Wuhan: Wuhan University of Technology, 2008 (in Chinese).
|
14 |
SALVO L, SUERY M, MARMOTTANT A, et al. 3D imaging in material science: Application of X-ray tomography[J]. Comptes Rendus Physique, 2010, 11(9-10): 641-649.
|
15 |
BUFFIERE J Y, MAIRE E, ADRIEN J, et al. In situ experiments with X ray tomography: An attractive tool for experimental mechanics[J]. Experimental Mechanics, 2010, 50(3): 289-305.
|
16 |
WANG L. Influence of the casting microstructure on damage mechanisms in Al-Si alloys by using 2D and 3D in situ analysis[D]. Lille: Ecole Centrale de Lille, 2015.
|
17 |
WITHERS P J, PREUSS M. Fatigue and damage in structural materials studied by X-ray tomography[J]. Annual Review of Materials Research, 2012, 42: 81-103.
|
18 |
WU S C, XIAO T Q, WITHERS P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182: 127-156.
|
19 |
吴圣川, 胡雅楠, 康国政. 材料疲劳损伤行为的先进光源表征技术[M]. 北京: 科学出版社, 2018.
|
|
WU S C, HU Y N, KANG G Z. Characterization of material fatigue damage via advanced light source tomography[M]. Beijing: Science Press, 2018 (in Chinese).
|
20 |
COLLINS B, MAGGI F, MATOUS K, et al. Using tomography to characterize heterogeneous propellants: AIAA-2008- 0941[R]. Reston: AIAA, 2008.
|
21 |
LEE H, BRANDYBERRY M, TUDOR A, et al. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(6): 061301.
|
22 |
刘新国, 刘佩进, 强洪夫, 等. 基于微CT技术的丁羟推进剂脱湿定量表征方法研究[J]. 推进技术, 2019, 40(5): 1162-1168.
|
|
LIU X G, LIU P J, QIANG H F, et al. Quantificational method of dewetting damage of HTPB propellant based on micro-CT detection[J]. Journal of Propulsion Technology, 2019, 40(5): 1162-1168 (in Chinese).
|
23 |
李世奇, 王广, 强洪夫, 等. HTPB复合固体推进剂细观结构微CT试验研究[J]. 火炸药学报, 2021, 44(3): 387-393.
|
|
LI S Q, WANG G, QIANG H F, et al. Micro-CT experimental study on the mesostructure of HTPB composite solid propellant[J]. Chinese Journal of Explosives & Propellants, 2021, 44(3): 387-393 (in Chinese).
|
24 |
喻程, 吴圣川, 胡雅楠, 等. 铝合金熔焊微气孔的三维同步辐射X射线成像[J]. 金属学报, 2015, 51(2): 159-168.
|
|
YU C, WU S C, HU Y N, et al. Three-dimensional imaging of gas pores in fusion welded al alloys by synchrotron radiation X-ray microtomography[J]. Acta Metallurgica Sinica, 2015, 51(2): 159-168 (in Chinese).
|
25 |
WU S C, YU C, YU P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science and Engineering: A, 2016, 651: 604-614.
|
26 |
XIE H L, DENG B, DU G H, et al. Latest advances of X-ray imaging and biomedical applications beamline at SSRF[J]. Nuclear Science and Techniques, 2015, 26(2): 10-25.
|
27 |
LI Y C, XU F, HU X F, et al. In situ investigation on the mixed-interaction mechanisms in the metal-ceramic system’s microwave sintering[J]. Acta Materialia, 2014, 66: 293-301.
|
28 |
YEAGER J D, LUO S N, JENSEN B J, et al. High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(6): 885-892.
|
29 |
KALMAN J, DEMKO A R, VARGHESE B, et al. Synchrotron-based measurement of aluminum agglomerates at motor conditions[J]. Combustion and Flame, 2018, 196: 144-146.
|