收稿日期:
2022-03-29
修回日期:
2022-04-18
接受日期:
2022-06-13
出版日期:
2023-01-15
发布日期:
2022-06-27
通讯作者:
张恒
E-mail:qwedc0919@163.com
基金资助:
Binbin ZHAO1,2, Heng ZHANG3(), Jie LI1
Received:
2022-03-29
Revised:
2022-04-18
Accepted:
2022-06-13
Online:
2023-01-15
Published:
2022-06-27
Contact:
Heng ZHANG
E-mail:qwedc0919@163.com
Supported by:
摘要:
结冰触发的复杂分离流动将导致翼型气动性能特别是失速特性全面恶化。结冰状态气动特性的准确预测和流动机理的深入剖析依赖于分离流场结构的精确求解。随着计算流体力学特别是湍流模拟方法的不断完善,数值模拟能够更为清晰和完备地反映非定常分离流场的细节特征及物理本质、提供更加翔实和丰富的气动力数据。从雷诺平均(RANS)、大涡模拟(LES)和RANS/LES这3类典型湍流模拟方法的应用层面出发,综合评述了近年来数值模拟研究在翼型结冰状态失速特性预测与分离特征描述等方面取得的主要进展,并从高精度冰形构造、新型湍流模拟方法、深层次非定常特性、实时耦合分析等方面对现阶段研究发展的相关趋势进行总结和展望。
中图分类号:
赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211-627211.
Binbin ZHAO, Heng ZHANG, Jie LI. Review of numerical simulation on complex separated flow of iced airfoil[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627211-627211.
1 | GENT R W, DART N P, CANSDALE J T. Aircraft icing[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2873-2911. |
2 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
3 | BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362. |
4 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
5 | STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583. |
6 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
7 | JOHNSON D A, KING L S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers[J]. AIAA Journal, 1985, 23(11): 1684-1692. |
8 | WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. |
9 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
10 | POTAPCZUK M, GERHART P. Progress in development of a Navier-Stokes solver for evaluation of iced airfoil performance[C]∥23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
11 | KWON O, SANKAR L. Numerical study of the effects of icing on finite wing aerodynamics[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990. |
12 | KWON O, SANKAR L. Numerical investigation of performance degradation of wings and rotors due to icing[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
13 | SHIM J, CHUNG J, LE K. A computational investigation of ice geometry effects on airfoil performances[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
14 | CHI X, LI Y, ADDY H, et al. A comparative study using CFD to predict iced airfoil aerodynamics[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
15 | CHI X, ZHU B, SHIH T, et al. CFD analysis of the aerodynamics of a business-jet airfoil with leading-edge ice accretion[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
16 | PAN J P, LOTH E. Reynolds-averaged Navier-Stokes simulations of airfoils and wings with ice shapes[J]. Journal of Aircraft, 2004, 41(4): 879-891. |
17 | MARONGIU C, VITAGLIANO P L, ZANAZZI G, et al. Aerodynamic analysis of an iced airfoil at medium/high Reynolds number[J]. AIAA Journal, 2008, 46(10): 2469-2478. |
18 | JUN G, OLIDEN D, POTAPCZUK M G, et al. Computational aerodynamic analysis of three-dimensional ice shapes on a NACA 23012 airfoil[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
19 | MIRZAEI M, ARDEKANI M A, DOOSTTALAB M. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology, 2009, 13(6): 267-276. |
20 | 陈科, 曹义华, 安克文, 等. 应用混合网格分析复杂积冰翼型气动性能[J]. 航空学报, 2007, 28(S1): 87-91. |
CHEN K, CAO Y H, AN K W, et al. Application of hybrid grid to analyzing complex iced airfoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1): 87-91 (in Chinese). | |
21 | 陈科, 曹义华, 安克文, 等. 复杂积冰翼型气动性能分析[J]. 航空动力学报, 2007, 22(6): 986-990. |
CHEN K, CAO Y H, AN K W, et al. Analysis on aerodynamic performance of complex iced airfoils[J]. Journal of Aerospace Power, 2007, 22(6): 986-990 (in Chinese). | |
22 | 李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376-382. |
LI Y X, ZHANG C, LIU H, et al. Aerodynamic effects of supercooled large droplet runback ice on airfoils[J]. Acta Aerodynamica Sinica, 2014, 32(3): 376-382 (in Chinese). | |
23 | LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289. |
24 | LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681. |
25 | LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. |
26 | 黄冉冉, 李栋, 刘藤, 等. 冰形表面粗糙度对翼型的失速特性影响分析[J]. 空气动力学学报, 2021, 39(1): 59-65. |
HUANG R R, LI D, LIU T, et al. The effect of ice accretion roughness on airfoil stall characteristics[J]. Acta Aerodynamica Sinica, 2021, 39(1): 59-65 (in Chinese). | |
27 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
28 | BROWN C M, KUNZ R, KINZEL M, et al. RANS and LES simulation of airfoil ice accretion aerodynamics: AIAA-2014-2203[R]. Reston: AIAA, 2014. |
29 | GRINSTEIN F F, MARGOLIN L G, RIDER W. Implicit Large Eddy Simulation: Computing turbulent fluid dynamics[M]. Cambridge: Cambridge University Press, 2007. |
30 | HUNT J, WRAY A, MOIN P. Proceedings of the 1988 summer program[R]. Stanford: Center for Turbulence Research, Stanford University, 1988. |
31 | CHUNG D, PULLIN D I. Large-eddy simulation and wall modelling of turbulent channel flow[J]. Journal of Fluid Mechanics, 2009, 631: 281-309. |
32 | XIAO M C, ZHANG Y F, ZHOU F. Numerical study of iced airfoils with horn features using large-eddy simulation[J]. Journal of Aircraft, 2019, 56(1): 94-107. |
33 | SPALART P R. Young-person’s guide to detached-eddy simulation grids: NASA CR-2001-211032[R]. Washington, D.C.: NASA, 2001. |
34 | SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263. |
35 | SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41: 181-202. |
36 | SPALART P R, JOU W, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Los Angles: Greyden Press, 1997. |
37 | SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181. |
38 | MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]∥The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339-352. |
39 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
40 | PAN J P, LOTH E. Detached eddy simulations for airfoil with ice shapes[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004. |
41 | PAN J P, LOTH E. Detached eddy simulations for iced airfoils[J]. Journal of Aircraft, 2005, 42(6): 1452-1461. |
42 | CHOO Y, THOMPSON D, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions: Year one report: NASA CR-2004-213379[R]. Washington, D.C.: NASA, 2004. |
43 | MOGILI P, THOMPSON D, CHOO Y, et al. RANS and DES computations for a wing with ice accretion[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
44 | LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
45 | LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models[C]∥ 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
46 | GIRIMAJI S S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method[J]. Journal of Applied Mechanics, 2006, 73(3): 413-421. |
47 | ALAM M, WALTERS K, THOMPSON D. Simulations of separated flow around an airfoil with ice shape using hybrid RANS/LES models[C]∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011. |
48 | ALAM M F, THOMPSON D S, WALTERS D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 52(1): 244-256. |
49 | MOLINA E S, SILVA D M, BROEREN A P, et al. Application of DDES to iced airfoil in Stanford University Unstructured (SU2)[M]∥Progress in Hybrid RANS-LES Modelling. Cham: Springer, 2020: 283-293. |
50 | XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5): 1119-1136. |
51 | XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. |
52 | XIAO Z X, LUO K Y. Improved delayed detached-eddy simulation of massive separation around triple cylinders[J]. Acta Mechanica Sinica, 2015, 31(6): 799-816. |
53 | 张恒, 李杰, 龚志斌. 基于IDDES方法的翼型结冰失速分离流动数值模拟[J]. 空气动力学学报, 2016, 34(3): 283-288. |
ZHANG H, LI J, GONG Z B. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. Acta Aerodynamica Sinica, 2016, 34(3): 283-288 (in Chinese). | |
54 | ZHANG H, LI J, JIANG Y X, et al. Analysis of the expanding process of turbulent separation bubble on an iced airfoil under stall conditions[J]. Aerospace Science and Technology, 2021, 114: 106755. |
55 | HU S F, ZHANG C, LIU H, et al. IDDES simulation of flow separation on an 3-D NACA23012 airfoil with spanwise ridge ice[C]∥2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. |
56 | HU S F, ZHANG C, LIU H, et al. Study on vortex shedding mode on the wake of horn/ridge ice contamination under high-Reynolds conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(13): 5045-5056. |
57 | BAO S Y, SHI Y J, SONG W B. Numerical study of iced airfoil aeroacoustics using IDDES[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
58 | 谭雪, 张辰, 徐文浩, 等. 近失速形态下冰脊分离非定常流的IDDES和模态分析[J]. 上海交通大学学报, 2021, 55(11): 1333-1342. |
TAN X, ZHANG C, XU W H, et al. Unsteadiness and modal analysis of ridge ice-induced separation in post-stall conditions via IDDES[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1333-1342 (in Chinese). | |
59 | ZHANG C, TAN X, XU W H, et al. High-fidelity modeling of turbulent shear flow downstream of a 3-D airfoil with spanwise ice contamination leading stall[J]. Computers & Fluids, 2022, 240: 105423. |
60 | SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4): 709-737. |
61 | XIAO M C, ZHANG Y F. Improved prediction of flow around airfoil accreted with horn or ridge ice[J]. AIAA Journal, 2021, 59(6): 2318-2327. |
62 | XIAO M C, ZHANG Y F. Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108653. |
63 | DECK S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation[J]. Theoretical and Computational Fluid Dynamics, 2012, 26(6): 523-550. |
64 | DUCLERCQ M, BRUNET V, MOENS F. Physical analysis of the separated flow around an iced airfoil based on ZDES simulations[C]∥4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012. |
65 | ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2016, 53(1): 168-181. |
66 | COSTES M, MOENS F. Advanced numerical prediction of iced airfoil aerodynamics[J]. Aerospace Science and Technology, 2019, 91: 186-207. |
67 | COSTES M, MOENS F, BRUNET V. Prediction of iced airfoil aerodynamic characteristics[C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
68 | BHUSHAN S, WALTERS D K. A dynamic hybrid Reynolds-averaged Navier Stokes-Large eddy simulation modeling framework[J]. Physics of Fluids, 2012, 24(1): 015103. |
69 | WALTERS D K, BHUSHAN S, ALAM M F, et al. Investigation of a dynamic hybrid RANS/LES modelling methodology for finite-volume CFD simulations[J]. Flow, Turbulence and Combustion, 2013, 91(3): 643-667. |
70 | GIRIMAJI S S, SRINIVASAN R, JEONG E. PANS turbulence model for seamless transition between RANS and LES: Fixed-point analysis and preliminary results[C]∥Proceedings of ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. New York: ASME, 2003: 1901-1909. |
71 | MENTER F, EGOROV Y. A scale adaptive simulation model using two-equation models[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
72 | CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28. |
73 | XIAO M C, ZHANG Y F, CHEN H X. Numerical study of an iced airfoil using window-embedded RANS/LES hybrid method[C]∥9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017. |
74 | ANSELL P J, BRAGG M B. Measurement of unsteady flow reattachment on an airfoil with an ice shape[J]. AIAA Journal, 2014, 52(3): 656-659. |
75 | ANSELL P J, BRAGG M B. Unsteady modes in flowfield about airfoil with horn-ice shape[J]. Journal of Aircraft, 2016, 53(2): 475-486. |
[1] | 农历, 盛子帅, 冼军, 张怀宝. 基于高精度算法的结冰翼型分离流动数值模拟[J]. 航空学报, 2023, 44(S2): 729291-729291. |
[2] | 王圣业, 邓小刚, 董义道, 王东方, 蔡佳鸿. 面向工程湍流的高精度数值方法[J]. 航空学报, 2023, 44(15): 528728-528728. |
[3] | 赵雅甜, 邵志远, 阎超, 向星皓. 雷诺应力与涡黏性模型的分离流预测对比分析[J]. 航空学报, 2023, 44(11): 127619-127619. |
[4] | 舒博文, 杜一鸣, 高正红, 夏露, 陈树生. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 526385-526385. |
[5] | 李成成, 李芳, 杨斌, 王莹. 等离子体激励抑制喷管分离流动数值模拟[J]. 航空学报, 2021, 42(7): 124547-124547. |
[6] | 王方, 王煜栋, 姜胜利, 陈军, 唐军, 徐华胜, 李象远, 邢竞文, 高东硕, 金捷. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报, 2021, 42(12): 625003-625003. |
[7] | 陈浩, 袁先旭, 毕林, 华如豪, 司芳芳, 唐志共. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8): 123642-123642. |
[8] | 朱志斌, 尚庆, 白鹏, 刘强. 翼型低雷诺数层流分离现象随雷诺数的演化特征[J]. 航空学报, 2019, 40(5): 122528-122528. |
[9] | 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520733-520746. |
[10] | 徐诸霖, 达兴亚, 范召林. 基于五孔探针的大S弯进气道旋流畸变评估[J]. 航空学报, 2017, 38(12): 121342-121342. |
[11] | 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38(1): 120102-120102. |
[12] | 孟德虹, 孙岩, 王运涛, 李伟. 战斗机垂尾脉动压力数值模拟[J]. 航空学报, 2016, 37(8): 2472-2480. |
[13] | 徐晶磊, 高歌, 杨焱. 基于当地流动结构的RANS/LES混合模型[J]. 航空学报, 2014, 35(11): 2992-2999. |
[14] | 尚庆, 陈林, 李雪, 袁湘江. 高超声速钝双楔绕流流动转捩与分离流动的壁温影响[J]. 航空学报, 2014, 35(11): 2958-2969. |
[15] | 陈琦, 司芳芳, 陈坚强, 袁先旭, 谢昱飞. RANS/LES在超声速突起物绕流中的应用研究[J]. 航空学报, 2013, 34(7): 1531-1537. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学