1 |
蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012.
|
|
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese).
|
2 |
CAITLIN L. Lockheed Martin unveils SR-72[J]. IHS Jane’s Defence Weekly, 2013, 50(46): 6-6.
|
3 |
廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术, 2020, 31(11): 3-6.
|
|
LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6 (in Chinese).
|
4 |
LOBBIA M, SUZUKI K. Numerical investigation of waverider-derived hypersonic transport configurations[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3804.
|
5 |
LOBBIA M, SUZUKI K. Multidisciplinary design optimization of hypersonic transport configurations using waveriders[C]∥19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston AIAA, 2014.
|
6 |
STEELANT J. Achievements obtained for sustained hypersonic flight within the LAPCAT project[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
|
7 |
STEELANT J. LAPCAT: An EC funded project on sustained hypersonic flight[C]∥57th International Astronautical Congress. Reston: AIAA, 2006.
|
8 |
CUI K, HU S C, LI G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China Technological Sciences, 2013, 56(8): 1980-1988.
|
9 |
XIAO Y, CUI K, LI G Let al. Preliminary study of aerodynamic performance for waverider-based hypersonic vehicles with dorsal mounted engines[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
10 |
SZIROCZAK D, Smith H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28.
|
11 |
李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13.
|
|
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese).
|
12 |
王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1828-1835.
|
|
WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Science in China (Series E: Technological Sciences), 2009, 39(11): 1828-1835 (in Chinese).
|
13 |
LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
|
14 |
LI S B. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65.
|
15 |
LI S B. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76: 291-302.
|
16 |
LIU J. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162: 160-167.
|
17 |
ZHANG T T. A design approach of wide-speed-range vehicles based on the cone-derived theory[J]. Aerospace Science and Technology, 2017, 71: 42-51.
|
18 |
ZHAO Z T. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147: 163-174.
|
19 |
RODI P. Vortex lift waverider configurations[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
|
20 |
RODI P. The osculating flowfield method of waverider geometry generation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
|
21 |
LIU C Z, BAI P, CHEN Y X, et al. Research on the design of double swept waverider[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
22 |
崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学 力学 天文学, 2013, 43(5): 652-661.
|
|
CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(5): 652-661 (in Chinese).
|
23 |
CUI K, LI G L, XIAO Y. Aerodynamic performance study of high pressure zone capture wing configurations[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015.
|
24 |
CUI K, LI G L, XIAO Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55(6): 1909-1919.
|
25 |
李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885.
|
|
LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885 (in Chinese).
|
26 |
李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584.
|
|
LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584 (in Chinese).
|
27 |
LI G L, CUI K, XIAO Y, et al. Effects of shock impingement on aerothermal and aerodynamic performance for high-pressure capturing wings[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
28 |
CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(2): 024722.
|
29 |
LI G L, CUI K, XU Y Z, et al. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(5): 254721.
|
30 |
常思源, 肖尧, 李广利, 等. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究[J]. 力学学报, 2022, 54(10): 2760-2772.
|
|
CHANG S Y, XIAO Y, LI G L, et al. Effect of wing dihedral and anhedral angles on subsonic aerodynamic characteristics of hcw configuration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2760-2772 (in Chinese).
|
31 |
王浩祥, 李广利, 徐应洲, 等. 高压捕获翼构型跨声速流动特性初步研究[J]. 空气动力学学报, 2020, 38(3): 441-447.
|
|
WANG H X, LI G L, XU Y Z, et al. Preliminary study on transonic flow characteristics of a high-pressure capturing wing configuration[J]. Acta Aerodynamica Sinica, 2020, 38(3): 441-447 (in Chinese).
|
32 |
王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070.
|
|
WANG H X, LI G L, YANG J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070 (in Chinese).
|
33 |
李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007.
|
|
LI S X. Typical hypersonic flow characteristics[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
|