1 |
孟玉珊. 减阻杆组合体减阻防热耦合机理研究 [D]. 长沙: 国防科技大学, 2020: 1-3.
|
|
MENG Y S. Coupled investigation on drag reduction and thermal protection mechanism induced by the spike and its combinations[D]. Changsha: National University of Defense Technology, 2020: 1-3 (in Chinese).
|
2 |
BUSHNELL D A. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 81-96.
|
3 |
HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(7): 551-561.
|
4 |
GNEMMI P, SRULIJES J, ROUSSEL K, et al. Flowfield around spike-tipped bodies for high attack angles at Mach 4.5[J]. Journal of Spacecraft and Rockets, 2003, 40(5): 622-631.
|
5 |
SRULIJES J, GNEMMI P, RUNNE K, et al. High-pressure shock tunnel experiments and CFD calculations on spike-tipped blunt bodies[C]∥22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002.
|
6 |
NICHOLSON J E, HILL J A F, WILSON JR J C. Self-balancing spike control: US3416758[P]. 1968-12-17.
|
7 |
SCHNEPF C, WYSOCKI O, SCHÜLEIN E. Wave drag reduction with a self-aligning aerodisk on a missile configuration[C]∥Progress in Flight Physics. Les Ulis: EDP Sciences, 2017.
|
8 |
SCHNEPF C, WYSOCKI O, SCHÜLEIN E. Wave drag reduction due to a self-aligning aerodisk[C]∥Progress in Flight Physics - Volume 7. Les Ulis: EDP Sciences, 2015.
|
9 |
WYSOCKI O, SCHÜLEIN E, SCHNEPF C. Experimental study on wave drag reduction at slender bodies by a self-aligning aerospike[M]∥ Notes on numerical fluid mechanics and multidisciplinary Design. Cham: Springer International Publishing, 2014: 583-590.
|
10 |
SCHÜLEIN E. Shock-wave control by permeable wake generators[C]∥5th Flow Control Conference. Reston: AIAA, 2010.
|
11 |
SCHÜLEIN E. Wave drag reduction concept for blunt bodies at high angles of attack[M]∥ Shock waves. Berlin: Springer Berlin Heidelberg, 2009: 1315-1320.
|
12 |
SCHÜLEIN E. Wave drag reduction approach for blunt bodies at high angles of attack: Proof-of-concept experiments[C]∥ 4th Flow Control Conference. Reston: AIAA, 2008.
|
13 |
GENG Y F, YU J, KONG W X. Investigation on a new method of adaptive drag reduction and non-ablation thermal protection system for hypersonic vehicles[J]. Acta Aerodynamic Sinica, 2012, 30(4): 493-501.
|
14 |
DENG F, JIAO Z H, LIANG B B, et al. Spike effects on drag reduction for hypersonic lifting body[J]. Journal of Spacecraft and Rockets, 2017, 54(6): 1185-1195.
|
15 |
HUANG J, YAO W X, QIN N. Heat reduction mechanism of hypersonic spiked blunt body with installation angle at large angle of attack[J]. Acta Astronautica, 2019, 164: 268-276.
|
16 |
刘伟, 赵海洋, 杨小亮. 返回舱动态稳定性分析及被动控制方法研究[J]. 中国科学: 物理学 力学 天文学, 2010, 40(9): 1156-1164.
|
|
LIU W, ZHAO H Y, YANG X L. Analysis of dynamic stability and research of passive control method for capsule[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(9): 1156-1164 (in Chinese).
|
17 |
赵忠良, 杨海泳, 马上, 等. 某典型飞行器模型俯仰/滚转两自由度耦合动态气动特性[J]. 航空学报, 2018, 39(12): 122375.
|
|
ZHAO Z L, YANG H Y, MA S, et al. Unsteady aerodynamic characteristics of two-degree-of-freedom pitch/roll coupled motion for a typical vehicle model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122375 (in Chinese).
|
18 |
赖江, 赵忠良, 王晓冰, 等. 匀速俯仰运动及角速率对横向喷流的影响[J]. 航空学报, 2019, 40(10): 122866.
|
|
LAI J, ZHAO Z L, WANG X B, et al. Uniform pitching motion and angular rate effects on transverse jet interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122866 (in Chinese).
|
19 |
邓维. 弹箭俯仰阻尼动导数计算与分析[D]. 南京: 南京理工大学, 2017: 1-9.
|
|
DENG W. Predictions and analysis of pitching dynamic derivatives for rocket[D]. Nanjing: Nanjing University of Science and Technology, 2017: 1-9 (in Chinese).
|
20 |
MENEZES V, SARAVANAN S, JAGADEESH G, et al. Experimental investigations of hypersonic flow over highly blunted cones with aerospikes[J]. AIAA Journal, 2003, 41(10): 1955-1966.
|
21 |
ZHANG L P, CHANG X H, DUAN X P, et al. A block LU-SGS implicit unsteady incompressible flow solver on hybrid dynamic grids for 2D external bio-fluid simulations[J]. Computers & Fluids, 2009, 38(2): 290-308.
|
22 |
马戎, 常兴华, 赫新, 等. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理, 2016, 1(6): 36-49.
|
|
MA R, CHANG X H, HE X, et al. Loose and strong coupling methods for flow/kinematics coupled simulations and stability analysis[J]. Physics of Gases, 2016, 1(6): 36-49 (in Chinese).
|
23 |
EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3): 225-233.
|
24 |
刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙: 国防科技大学, 2011:14-43.
|
|
LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha: National University of Defense Technology, 2011:14-43 (in Chinese).
|
25 |
袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究 [D]. 绵阳: 中国空气动力研究与发展中心, 2002.
|
|
YUAN X X. Numerical simulation of unsteady flow and analysis of aircraft dynamic characteristics[D]. Mianyang: China Aerodynamics Research and Development Center, 2002 (in Chinese).
|
26 |
OKTAY E, AKAY H. CFD predictions of dynamic derivatives for missiles[C]∥40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
|
27 |
KHARATI-KOOPAEE M, GAZOR H. Assessment of the aerodisk size on drag reduction and thermal protection of high-bluntness vehicles at hypersonic speeds[J]. Journal of Aerospace Engineering, 2017, 30(4): 0417008.
|