航空学报 > 2022, Vol. 43 Issue (2): 325008-325008   doi: 10.7527/S1000-6893.2020.25008

非匹配扰动下变体无人机预设性能控制

李新凯1, 张宏立1, 范文慧2   

  1. 1. 新疆大学 电气工程学院, 乌鲁木齐 830047;
    2. 清华大学 自动化系, 北京 100084
  • 收稿日期:2020-11-25 修回日期:2021-01-07 发布日期:2022-03-04
  • 通讯作者: 张宏立 E-mail:zhlxju@163.com
  • 基金资助:
    国家自然科学基金(51967019,52065064);新疆维吾尔自治区天山雪松计划(2020XS03);新疆维吾尔自治区天山青年计划(2019Q064,2020Q066)

Prescribed performance control for morphing aerospace vehicle under mismatched disturbances

LI Xinkai1, ZHANG Hongli1, FAN Wenhui2   

  1. 1. School of Electrical Engineering, Xinjiang University, Urumqi 830047, China;
    2. Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2020-11-25 Revised:2021-01-07 Published:2022-03-04
  • Supported by:
    National Natural Science Foundation of China (51967019, 52065064); Tianshan Cedar Program of Xinjiang Uygur Autonomous Region (2020XS03); Tianshan Youth Program of Xinjiang Uygur Autonomous Region (2019Q064, 2020Q066)

摘要: 针对半倾转旋翼变体无人机易受到非匹配扰动和受制于性能约束的问题,提出一种基于复合浸入与不变(I&I)理论的非匹配/匹配扰动观测器和有限时间预设性能控制策略。首先,建立了含有复合扰动的变体无人机数学模型;其次,引入有限时间动态尺度技术和监督因子的概念,提出了一种复合I&I的扰动观测器对非匹配/匹配扰动进行估计和补偿;最后,以动态滑模面为性能约束对象构建了新型的有限时间性能函数,并与障碍Lyapunov函数相结合来表征系统的稳态和瞬态性能。理论和仿真算例验证了所提方法的有效性和优越性。

关键词: 变体无人机, 非匹配扰动, 浸入与不变, 有限时间动态尺度因子, 预设性能, 障碍Lyapunov函数

Abstract: The semi-tilt-rotor morphing aerospace vehicle is susceptible to mismatched disturbances and subject to performance constraints. To overcome these problems, a mismatched/matched disturbance observer based on the composite Immersion and Invariance (I&I) theory and a finite-time prescribed performance control strategy are proposed. Firstly, a mathematical model with composite disturbances is established for the morphing aerospace vehicle. Then, a composite I&I based disturbance observer is designed to estimate and compensate mismatched/matched disturbances by introducing the finite-time dynamic scaling technique and supervision factor. Finally, a novel finite-time performance function is constructed with the dynamic sliding mode surface as the performance constraint. The function is combined with the barrier Lyapunov function to characterize the steady-state and transient performance of the system. The effectiveness and superiority of the proposed method are verified by theoretical and simulation results.

Key words: morphing aerospace vehicle, mismatched disturbance, immersion and invariance, finite-time dynamic scaling factor, prescribed performance, barrier Lyapunov function

中图分类号: