[1] TOTOKI H, OCHI Y, SATO M, et al. Design and testing of a low-order flight control system for quad-tilt-wing UAV[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10):2426-2433. [2] TRAN A T, SAKAMOTO N, SATO M, et al. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1):357-369. [3] 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2):024024. ZHANG H Z, SONG B F, SUN Z C, et al. Driving mechanism of flapping wing aircraft:Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):024024(in Chinese). [4] 李斌斌, 马磊, 孙小通, 等. 一种多旋翼飞行器的设计及实验验证[J]. 机器人, 2020, 42(3):257-266. LI B B, MA L, SUN X T, et al. Design and experimental verification of a multirotor aircraft[J]. Robot, 2020, 42(3):257-266(in Chinese). [5] 卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2020, 37(6):1377-1387. LU K W, YANG Z, ZHANG Q Y, et al. Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors[J]. Control Theory & Applications, 2020, 37(6):1377-1387(in Chinese). [6] RITZ R, D'ANDREA R. A global strategy for tailsitter hover control[M]//Springer Proceedings in Advanced Robotics. Cham:Springer International Publishing, 2017:21-37. [7] 刘德元, 刘昊, FRANK L L. 尾座式无人飞行器鲁棒容错编队控制[J]. 航空学报, 2021, 42(2):324296. LIU D Y, LIU H, LEWIS F. Robust fault-tolerant formation control for tail-sitters[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):324296(in Chinese). [8] TIAN B L, LU H C, ZUO Z Y, et al. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute, 2018, 355(8):3470-3487. [9] FANG X, WU A G, SHANG Y J, et al. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance[J]. Nonlinear Dynamics, 2016, 83(1-2):1053-1068. [10] YAN K, CHEN M, WU Q X, et al. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults[J]. Chinese Journal of Aeronautics, 2019, 32(10):2299-2310. [11] JIA Z Y, YU J Q, MEI Y S, et al. Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances[J]. Aerospace Science and Technology, 2017, 68:299-307. [12] KVRKÇV B, KASNAKOǦ LU C, EFE M Ö. Disturbance/uncertainty estimator based integral sliding-mode control[J]. IEEE Transactions on Automatic Control, 2018, 63(11):3940-3947. [13] GUO B, CHEN Y. Adaptive fault tolerant control for time-varying delay system with actuator fault and mismatched disturbance[J]. ISA Transactions, 2019, 89:122-130. [14] ZHANG J H, LIU X W, XIA Y Q, et al. Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11):7040-7048. [15] YANG J, LI S H, YU X H. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):160-169. [16] ASTOLFI A, ORTEGA R. Immersion and invariance:a new tool for stabilization and adaptive control of nonlinear systems[J]. IFAC Proceedings Volumes, 2001, 34(6):91-96. [17] HU J C, ZHANG H H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles[J]. Automatica, 2013, 49(7):2160-2167. [18] ZOU Y, MENG Z Y. Immersion and invariance-based adaptive controller for quadrotor systems[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(11):2288-2297. [19] LEE K W, SINGH S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance[J]. Acta Astronautica, 2020, 167:164-180. [20] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12):2883-2889. [21] ZHANG B, CAI Y L. Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid[J]. IEEE Access, 2019, 7:34850-34861. [22] YANG S, AKELLA M R, MAZENC F. Immersion and invariance observers for gyro-free attitude control systems[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(11):2570-2577. [23] DANG Q Q, GUI H C, XU M, et al. Dual-quaternion immersion and invariance velocity observer for controlling asteroid-hovering spacecraft[J]. Acta Astronautica, 2019, 161:304-312. [24] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099. [25] BECHLIOULIS C P, ROVITHAKIS G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica, 2009, 45(2):532-538. [26] SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2):574-582. [27] LUO H Y, XU H Z, LIU X B. Immersion and invariance based robust adaptive control of high-speed train with guaranteed prescribed performance bounds[J]. Asian Journal of Control, 2015, 17(6):2263-2276. [28] ZHU Y K, QIAO J Z, GUO L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. [29] HUA C C, CHEN J N, GUAN X P. Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance[J]. Journal of the Franklin Institute, 2018, 355(14):6323-6338. [30] LIU Y, LIU X P, JING Y W. Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance[J]. Information Sciences, 2018, 468:29-46. [31] 李小华, 胡利耀. 一类p规范型非线性系统预设性能有限时间H∞跟踪控制[J]. 自动化学报, 2021, 47(12):1-11. LI X H, HU Y L. Prescribed performance finite-time H∞ tracking control for a class of p-normal form nonlinear systems[J]. Acta Automatica Sinica, 2021, 47(12):1-11(in Chinese). [32] HE S, LI X H. Decentralised adaptive prescribed performance finite-time tracking control for a class of nonlinear interconnected systems with unknown control directions[J]. International Journal of Control, 2020:1-20. [33] LIU N, SHAO X L, LI J, et al. Attitude restricted back-stepping anti-disturbance control for vision based quadrotors with visibility constraint[J]. ISA Transactions, 2020, 100:109-125. [34] YUAN Y, WANG Z, GUO L, et al. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(9):3391-3400. [35] XU B, SHI Z K, SUN F C, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE Transactions on Cybernetics, 2019, 49(3):1047-1057. [36] LIU Y J, LU S M, TONG S C, et al. Adaptive control-based Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints[J]. Automatica, 2018, 87:83-93. [37] HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):331-341. [38] 冯振欣, 郭建国, 周军. 高超声速飞行器新型预设性能控制器设计[J]. 宇航学报, 2018, 39(6):656-663. FENG Z X, GUO J G, ZHOU J. Novel prescribed performance controller design for a hypersonic vehicle[J]. Journal of Astronautics, 2018, 39(6):656-663(in Chinese). [39] 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6):321763. MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):321763(in Chinese). [40] HU Q L, JIANG B Y, ZHANG Y M. Observer-based output feedback attitude stabilization for spacecraft with finite-time convergence[J]. IEEE Transactions on Control Systems Technology, 2019, 27(2):781-789. [41] JACOBS E N, SHERMAN A. Airfoil section characteristics as affected by variations of the Reynolds number[M]. NACA Technical Report, 1937, 586:227-264. [42] PATRE P M, MACKUNIS W, JOHNSON M, et al. Composite adaptive control for Euler-Lagrange systems with additive disturbances[J]. Automatica, 2010, 46(1):140-147. [43] NA J, HERRMANN G, REN X M, et al. Robust adaptive finite-time parameter estimation and control of nonlinear systems[C]//2011 IEEE International Symposium on Intelligent Control. Piscataway:IEEE Press, 2011:1014-1019. |