航空学报 > 2020, Vol. 41 Issue (2): 323428-323428   doi: 10.7527/S1000-6893.2019.23428

基于浸入与不变理论的航天器姿态跟踪自适应控制

夏冬冬1,2, 岳晓奎1,2   

  1. 1. 西北工业大学 航天飞行动力学技术国家级重点实验室, 西安 710072;
    2. 西北工业大学 航天学院, 西安 710072
  • 收稿日期:2019-09-02 修回日期:2019-10-08 出版日期:2020-02-15 发布日期:2019-11-14
  • 通讯作者: 夏冬冬 E-mail:xiadd_nwpu@163.com
  • 基金资助:
    国家自然科学基金(11972026);中央高校基本科研业务费专项资金

Immersion and invariance based attitude adaptive tracking control for spacecraft

XIA Dongdong1,2, YUE Xiaokui1,2   

  1. 1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2019-09-02 Revised:2019-10-08 Online:2020-02-15 Published:2019-11-14
  • Supported by:
    National Natural Science Foundation of China (11972026);the Fundamental Research Funds for the Central Universities

摘要: 针对惯性参数不确定的航天器姿态跟踪控制问题,基于浸入与不变(I&I)方法设计出了一种新的姿态跟踪控制器。研究结果表明,传统的浸入与不变方法运用到姿态跟踪模型,存在参数回归矩阵不可积进而导致偏微分方程无解析解的问题。针对该问题,提出了一种对回归矩阵改造使其满足可积条件的方法,通过动态放缩技术消除了回归矩阵改造前后的差异对闭环系统稳定性的影响,设计出了一种新的航天器姿态跟踪自适应控制器。通过李雅普诺夫稳定性分析方法证明了所设计的控制器能够保证闭环系统的全局渐近稳定性。相对于已有的基于动态放缩法的浸入与不变控制器,设计了一种全新的缩放因子,使得控制器的执行不需要缩放因子的信息,并且也不需要惯量矩阵的先验信息。最后,仿真对比实验进一步验证了所设计控制器的有效性和优越性。

关键词: 浸入与不变, 惯性参数不确定, 姿态跟踪控制, 回归矩阵, 动态放缩法, 李雅普诺夫分析

Abstract: In this paper, the spacecraft attitude tracking control with inertia uncertainty is addressed, and a novel Immersion and Invariance (I&I) based adaptive tracking controller is proposed. The results show that the parametric regression matrix is not integrable when I&I methodology is applied to the attitude dynamic systems, which leads to non-analytical solution of partial differential equations in the I&I controller design. To overcome this problem, this paper presented a new I&I adaptive tracking controller for the spacecraft attitude via the dynamic scaling technique. A rigorous Lyapunov analysis is provided to guarantee the globally asymptotic stability of the closed-loop systems. A key feature in this paper is that the controller implementation is no need of the scaling factor and the prior knowledge of inertia matrix by virtue of the innovative scaling factor design. Finally, the effectiveness and superiority of the proposed controller are illustrated by numerical simulations compared with the certainty-equivalence-based controller.

Key words: immersion and invariance, inertia uncertainty, attitude tracking control, regression matrix, dynamic scaling, Lyapunov analysis

中图分类号: