[1] YEOMANS D K, ANTREASIAN P G, BARRIOT J P, et al. Radio science results during the NEAR-shoemaker spacecraft rendezvous with eros[J]. Science, 2000, 289(5487):2085-8. [2] FUJIWARA A, KAWAGUCHI J, YEOMANS D K, et al. The rubble-Pile asteroid Itokawa as observed by hayabusa[J]. Science, 2006, 312(5778):1330-1334. [3] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8):1-26. [4] AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-49. [5] YUANXIN W, XIAOPING H, DEWEN H, et al. Strapdown inertial navigation system algorithms based on dual quaternions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):110-32. [6] CRASSIDIS J L, MARKLEY F L, CHENG Y. Survey of nonlinear attitude estimation methods[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):12-28. [7] FARHAD A, KOUROSH P. Adaptive motion estimation of a tumbling satellite using laser-vision data with unknown noise characteristics[C]//Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2007. [8] AGHILI F, PARSA K. Motion and parameter estimation of space objects using laser-vision data[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):538-50. [9] GUI H, DE RUITER A H J. Quaternion invariant extended kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(4):863-878. [10] SCHLANBUSCH R, GRØTLI E I, LORIA A, et al. Hybrid attitude tracking of rigid bodies without angular velocity measurement[J]. Systems & Control Letters, 2012, 61(4):595-601. [11] SCHLANBUSCH R, LORIA A, KRISTIANSEN R, et al. PD+ based output feedback attitude control of rigid bodies[J]. IEEE Transactions on Automatic Control, 2012, 57(8):2146-2152. [12] HU J, ZHANG H. Bounded output feedback of rigid-body attitude via angular velocity observers[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1240-1248. [13] ZOU A M. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1):338-345. [14] SCHLANBUSCH R, INGAR GROTLI E I. Hybrid certainty equivalence control of rigid bodies with quaternion measurements[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2512-2517. [15] YANG S, MAZENC F, AKELLA M R. Ultimate boundedness results for noise-corrupted quaternion output feedback attitude tracking controllers[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(12):3265-3273. [16] SUN D, CRASSIDIS J L. Observability analysis of six-degree-of-freedom configuration determination using vector observations[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6):1149-1157. [17] SINGLA P, SUBBARAO K, JUNKINS J L. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902. [18] VENKATRAMAN A, ORTEGA R, SARRAS I, et al. Speed observation and position feedback stabilization of partially linearizable mechanical systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1059-1074. [19] BRODSKY V, SHOHAM M. Dual numbers representation of rigid body dynamics[J]. Mechanism and Machine Theory, 1999, 34(5):693-718. [20] ASTOLFI A, ORTEGA R. Immersion and invariance:A new tool for stabilization and adaptive control of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2003, 48(4):590-606. [21] ASTOLFI A, ORTEGA R, VENKATRAMAN A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints[J]. Automatica, 2010, 46(1):182-189. [22] STAMNES Ø N, AAMO O M, KAASA G O. A constructive speed observer design for general Euler-Lagrange systems[J]. Automatica, 2011, 47(10):2233-2238. [23] GUI H, VUKOVICH G. Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort[J]. Nonlinear Dynamics, 2015, 83(1-2):597-614. |