[1] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 125-138. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 125-138 (in Chinese). [2] ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 527-561. [3] 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验研究[J]. 航空学报, 2021, 42(8): 124956. LI Q, WAN B B, YANG K, et al. Experimental research on the characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 124956(in Chinese). [4] XU G L, CHEN J Q, LIU G, et al. The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow[J]. Journal of Fluid Mechanics, 2019, 873: 914-941. [5] CHEN X, CHEN J Q, DONG S W, et al. Stability analyses of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack[J]. Acta Aerodynamica Sinica, 2020, 38(2): 299-307. [6] LI X H, CHEN J Q, HUANG Z F, et al. Stability analysis and transition prediction of streamwise vortices over a yawed cone at Mach 6[J]. Physics of Fluids, 2020, 32(12): 124110. [7] CHEN J Q, DONG S W, CHEN X, et al. Stationary cross-flow breakdown in a high-speed swept-wing boundary layer[J]. Physics of Fluids, 2021, 33(2): 024108. [8] DONG S W, CHEN J Q, YUAN X X, et al. Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone[J]. Advances in Aerodynamics, 2020, 2: 29. [9] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 125711. XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 125711 (in Chinese). [10] HADER C, FASEL H F. Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances[J]. Journal of Fluid Mechanics, 2018, 847: R3. [11] HADER C, FASEL H F. Three-dimensional wave packet in a Mach 6 boundary layer on a flared cone[J]. Journal of Fluid Mechanics, 2020, 885: R3. [12] LAIBLE A, FASEL H. Numerical investigation of hypersonic transition for a flared and a straight cone at Mach 6[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. [13] SIVASUBRAMANIAN J, FASEL H. Numerical investigation of laminar-turbulent transition in a cone boundary layer at Mach 6[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. [14] SIVASUBRAMANIAN J, FASEL H. Direct numerical simulation of controlled transition in a boundary layer on a sharp cone at Mach 6[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. [15] SIVASUBRAMANIAN J, FASEL H F. Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6[J]. Journal of Fluid Mechanics, 2014, 756: 600-649. [16] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: Fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218. [17] WAN B B, TU G H, YUAN X X, et al. Identification of traveling crossflow waves under real hypersonic flight conditions[J]. Physics of Fluids, 2021, 33(4): 044110. [18] LI X L, FU D X, MA Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone[J]. AIAA Journal, 2008, 46(11): 2899-2913. [19] ZHENG W J, YANG Y, CHEN S Y. Evolutionary geometry of Lagrangian structures in a transitional boundary layer[J]. Physics of Fluids, 2016, 28(3): 035110. [20] CHEN X, HUANG G L, LEE C B. Hypersonic boundary layer transition on a concave wall: Stationary Görtler vortices[J]. Journal of Fluid Mechanics, 2019, 865: 1-40. |