[1] 王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302. WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302 (in Chinese). [2] RYOO C K, CHO H, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492. [3] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732. [4] 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3): 848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 848-856 (in Chinese). [5] ERER K S, MERTTOPÇUOGLU O. Indirect impact-angle-control against stationary targets using biased pure proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 700-704. [6] ERER K S, OZGOREN M K. Control of impact angle using biased proportional navigation: AIAA-2013-5113[R] Reston: AIAA 2013. [7] LIU J H, SHAN J Y, LIU Q. Optimal pulsed guidance law with terminal impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(11): 1993-2005. [8] PARK B G, KIM T H, TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker’s look angle limits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1241-1256. [9] 郭建国, 韩拓, 周军, 等. 基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2): 320217. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 320217 (in Chinese). [10] HE S M, LIN D F, WANG J. Integral global sliding mode guidance for impact angle control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1843-1849. [11] KIM H G, LEE J Y, KIM H J. Look angle constrained impact angle control guidance law for homing missiles with bearings-only measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3096-3107. [12] 李庆春, 张文生, 韩刚. 终端约束条件下末端制导律研究综述[J]. 控制理论与应用, 2016, 33(1): 1-12. LI Q C, ZHANG W S, HAN G. Review of terminal guidance law with terminal constraints[J]. Control Theory & Applications, 2016, 33(1): 1-12 (in Chinese). [13] LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 193. [14] ZHANG Y A, WANG X L, MA G X. Impact time control guidance law with large impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2119-2131. [15] BANERJEE A, NABI M, RAGHUNATHAN T. Time-energy optimal guidance strategy for realistic interceptor using pseudospectral method[J]. Transactions of the Institute of Measurement and Control, 2020, 42(13): 2361-2371. [16] JUNG S, HWANG S, SHIN H, et al. Perception, guidance, and navigation for indoor autonomous drone racing using deep learning[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2539-2544. [17] 杨希祥, 杨慧欣, 王鹏. 伪谱法及其在飞行器轨迹优化设计领域的应用综述[J]. 国防科技大学学报, 2015, 37(4): 1-8. YANG X X, YANG H X, WANG P. Overview of pseudo-spectral method and its application in trajectory optimum design for flight vehicles[J]. Journal of National University of Defense Technology, 2015, 37(4): 1-8 (in Chinese). [18] SHIN H S, HE S M, TSOURDOS A. A domain-knowledge-aided deep reinforcement learning approach for flight control design[EB/OL]. (2019-08-19)[2021-06-05]. https://arxiv.org/abs/1908.06884. [19] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5): 321958. FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321958 (in Chinese). [20] SHALUMOV V. Cooperative online Guide-Launch-Guide policy in a target-missile-defender engagement using deep reinforcement learning[J]. Aerospace Science and Technology, 2020, 104: 105996. [21] 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(4): 656-669. YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(4): 656-669 (in Chinese). [22] FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171: 156-171. [23] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. CoRR, 2014, abs/1412:6980. [24] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-07-20)[2021-06-05] https://arxiv.org/abs/1707.06347. [25] HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624-1633. [26] SCHULMAN J, LEVINE S, MORITZ P, et al. Trust region policy optimization[J]. CoRR, 2015, abs/1502:05477. [27] LI H Y, HE S M, WANG J, et al. Near-optimal midcourse guidance for velocity maximization with constrained arrival angle[J]. Journal of Guidance, Control, and Dynamics, 2020, 44(1): 172-180. [28] ZARCHAN P. Tactical and strategic missile guidance: An introduction[M]. 7th ed. Volume 1.Reston: AIAA, 2019. [29] 佚名. STM32神经网络开发工具箱将AI技术引入边缘和节点嵌入式设备[J]. 单片机与嵌入式系统应用, 2019, 19(2): 94. Anonymous. Neural network development toolbox introduces AI technology into edge and node embedded devices[J]. Microcontrollers & Embedded Systems, 2019, 19(2): 94 (in Chinese). [30] STMicroelectronics. X-CUBE-AI-AI expansion pack for STM32CubeMX -STMicroelectronics [EB/OL].(2021-03-08)[2021-06-05]. https://www.st.com/en/embedded-software/x-cube-ai.html. |