[1] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additively manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese). [2] 郭鑫鑫, 陈哲涵. 激光增材制造过程数值仿真技术综述[J]. 航空学报, 2021,42(10):524227. GUO X X, CHEN Z H. Numerical simulation of laser additive manufacturing process:A review[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524227(in Chinese). [3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4. LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4(in Chinese). [4] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [5] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9):1111-1126. LIN X, HUANG W D. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9):1111-1126(in Chinese). [6] 袁经纬, 李卓, 汤海波, 等. 热处理对激光增材制造TC4合金耐蚀性及室温压缩蠕变性能的影响[J]. 航空学报, 2021,42(10):524390. YUAN J W, LI Z, TANG H B, et al. Effect of heat treatment on corrosion resistance and room temperature compression creep of LAMed TC4 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(10):524390. (in Chinese) [7] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1):011401. YANG Y Q, CHEN J, SONG C H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1):011401(in Chinese). [8] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):0500002. GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5):0500002(in Chinese). [9] LI C L, LEI H S, ZHANG Z, et al. Architecture design of periodic truss-lattice cells for additive manufacturing[J]. Additive Manufacturing, 2020, 34:101172. [10] GANGIREDDY S, KOMARASAMY M, FAIERSON E J, et al. High strain rate mechanical behavior of Ti-6Al-4V octet lattice structures additively manufactured by selective laser melting (SLM)[J]. Materials Science and Engineering:A, 2019, 745:231-239. [11] 郭怡东, 马玉娥, 李佩谣. 增材制造钛合金微桁架夹芯板低速冲击响应[J]. 航空学报, 2021, 42(2):423820. GUO Y D, MA Y E, LI P Y. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):423820(in Chinese). [12] GU D D, ZHANG H, DAI D H, et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Corrosion Science, 2020, 170:108657. [13] LI R D, WANG M B, YUAN T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy:Processing, microstructure, and properties[J]. Powder Technology, 2017, 319:117-128. [14] UDDIN S Z, MURR L E, TERRAZAS C A, et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2018, 22:405-415. [15] ANWAR A B, PHAM Q C. Selective laser melting of AlSi10Mg:Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology, 2017, 240:388-396. [16] SEIDMAN D N, MARQUIS E A, DUNAND D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys[J]. Acta Materialia, 2002, 50(16):4021-4035. [17] SPIERINGS A B, DAWSON K, HEELING T, et al. Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 2017, 115:52-63. [18] SHI Y J, YANG K, KAIRY S K, et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Materials Science and Engineering:A, 2018, 732:41-52. [19] SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc- and Zr-modified Al-Mg alloy:Mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering:A, 2017, 701:264-273. [20] ZHANG H, GU D D, YANG J K, et al. Selective laser melting of rare earth element Sc modified aluminum alloy:Thermodynamics of precipitation behavior and its influence on mechanical properties[J]. Additive Manufacturing, 2018, 23:1-12. [21] CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153:35-44. [22] LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting:Crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193:83-98. [23] GU D D, HAGEDORN Y C, MEINERS W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9):3849-3860. [24] LI R D, CHEN H, ZHU H B, et al. Effect of aging treatment on the microstructure and mechanical properties of Al-3.02Mg-0.2Sc-0.1Zr alloy printed by selective laser melting[J]. Materials & Design, 2019, 168:107668. |