[1] Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Mechanical Building and Automation, 2013, 42(4): 1-4. (in Chinese) 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.[2] Arcella F G, Froes F H. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5): 28-30.[3] Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 2009, 36(12): 3204-3209. (in Chinese) 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展及挑战[J]. 中国激光, 2009, 36(12): 3204-3209.[4] Breinan E M, Kear B H. Rapid solidification laser processing at high power density[J]. Materials Processing-Theory and Practices, 1983, 3: 235-295.[5] US National Science and Technology Council. National network for manufacturing innovation: a preliminary design [EB/OL]. (2013-01-10)[2014-07-22]. http://www.whitehouse.gov/sites/default/files/microsites/ostp/nstc_nnmi_prelim_design_final.pdf.[6] Gamann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of super-alloys: processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.[7] Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J]. Materials Science and Engineering: A, 2009, 509(1-2): 98-104.[8] Hussein N I S, Segal J, McCartney D G, et al. Micro-structure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire[J]. Materials Science and Engineering: A, 2008, 497(1-2): 260-269.[9] Moata R J, Pinkerton A J, Li L, et al. Residual stresses in laser direct metal deposited Waspaloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2288-2298.[10] Susana D, Puskar J D, Brooks J A, et al. Quantitative characterization of porosity in stainless steel LENS powders and deposits[J]. Materials Characterization, 2006, 57(1): 36-43.[11] Wang L, Felicelli S D, Pratt P. Residual stresses in LENS-deposited AISI 410 stainless steel plates[J]. Materials Science and Engineering: A, 2008, 496(1-2): 234-241.[12] Yu J, Rombouts M, Maes G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition[J]. Materials and Design, 2013, 45: 228-235.[13] Amano R S, Rohatgi P K. Laser engineered net shaping process for SAE 4140 low alloy steel[J]. Materials Science and Engineering: A, 2011, 528(22-23): 6680-6693.[14] Kadiri H E, Wang L, Horstemeyer M F, et al. Phase transformations in low-alloy steel laser deposits[J]. Materials Science and Engineering: A, 2008, 494(1-2): 10-20.[15] Milewski J O, Thoma D J, Fonseca J C, et al. Development of a near net shape processing method for rhenium using directed light fabrication[J]. Materials and Manufacturing Process, 1998, 13(5): 719-730.[16] Boyer R R. An overview of titanium use in the aerospace industry[J]. Materials Science and Engineering: A, 1996, 213(1-2): 103-114.[17] Kear B H, Breinan E M. Layerglazing, a new process for production and control of rapidly chilled metallurgical microstructure[J]. Metals Technology, 1979, 6(4):121-129.[18] Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: Comparison of micro-structure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211(6): 1146-1158.[19] Brandl E, Palm F, Michailov V, et al. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J]. Materials and Design, 2012, 32(10): 4665-4675.[20] Gockel J, Beuth J. Understanding Ti-6Al-4V micro structure control in additive manufacturing via process maps[C]//24th International SFF Symposium-An Additive Manufacturing Conference. Austin, TX, 2013: 666-674.[21] Clark D, Whittaker M, Bache M R. Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition (DLD)[J]. Metallurgical and Materials Transactions: B, 2012, 43(2): 388-396.[22] Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions: A, 2013, 44(2): 968-977.[23] Arcella F G, Abbott D H, House M A, et al. Titanium alloy structures for airframe applications by the laser forming process[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Atlanta, GA, 2000: 1465-1473.[24] Abbott D. AeroMet implementing novel Ti process[J]. Metal Powder Report, 1998, 53(2): 24-26.[25] Keicher D M, Smugeresky J E. The laser forming of metallic components using particulate materials[J]. JOM, 1997, 49(5): 51-54.[26] Kobryn P A, Semiatin S L. The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9): 40-42.[27] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12-13): 1459-1468.[28] He R, Wang H M. Fatigue crack nucleation and propagation behaviors of laser melting deposited Ti-6Al-2Zr-Mo-V alloy[J]. Materials Science and Engineering: A, 2010, 527(7-8): 1933-1937.[29] Liu C M, Wang H M, Tian X J, et al. Subtransus triplex heat treatment of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near beta titanium alloy[J]. Materials Science and Engineering: A, 2014, 590: 30-36.[30] Zhang S, Lin X, Huang W D, et al. Heat treatment microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy[J]. Rare Metals, 2009, 28(6): 537-544.[31] Li J, Wang H M. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene 41 by laser melting deposition manufacturing[J]. Materials Science and Engineering: A, 2010, 527(18-19): 4823-4829.[32] Zhang Y W, Zhang S Q, Wang H M. Microstructure and mechanical properties of directional rapidly solidified Ni-base superalloy Rene95 by laser melting deposition manufacturing[J]. Rare Metal Materials and Engineering, 2008, 37(1): 169-172. (in Chinese) 张亚玮, 张述泉, 王华明. 激光熔化沉积定向快速凝固高温合金组织与性能[J]. 稀有金属材料与工程, 2008, 37(1): 169-172.[33] Liu F, Lin X, Leng H, et al. Microstructure changes in a laser solid forming Inconel 718 superalloy thin wall in the deposition direction[J]. Optics and Laser Technology, 2013, 45: 330-335.[34] Ma M M, Wang Z M, Zeng X Y, et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel[J]. Optics and Laser Technology, 2013, 45: 209-216.[35] Lu Z L, Li D C, Lu B H, et al. Investigation into the direct laser forming process of steam turbine blade[J]. Optics and Laser in Engineering, 2011, 49(9-10): 1101-1110.[36] Zhang Y J, Yu G, He X L, et al. Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition[J]. Journal of Materials Processing Technology, 2012, 212(1): 106-112.[37] Song M H, Lin X, Huang W D, et al. Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming[J]. Journal of Materials Processing Technology, 2014, 214(3): 701-709.[38] Yan M, Zhang S Q, Wang H M. Solidification microstructure and mechanical properties of corrosion-resistant ultrahigh strength steel AerMet 100 fabricated by laser melting deposition[J]. Acta Metallurgica Sinica, 2007, 43(5): 472-476. (in Chinese) 颜敏, 张述泉, 王华明. 激光熔化沉积AerMet 100耐蚀超高强度钢的凝固组织及力学性能[J]. 金属学报, 2007, 43(5): 472-476.[39] Dong C, Zhang S Q, Li A, et al. Microstructure of ultrahigh strength steel 300M fabricated by laser melting deposition[J]. Acta Metallurgica Sinica, 2008, 44(5): 598-602. (in Chinese) 董翠, 张述泉, 李安, 等. 激光熔化沉积300M超高强度钢的显微组织[J]. 金属学报, 2008, 44(5): 598-602.[40] Zhong M L, Liu W J, Ning G Q, et al. Laser direct manufacturing of tungsten nickel collimation component[J]. Journal of Materials Processing Technology, 2004, 147(2): 167-173.[41] Wang Y D, Tang H B, Wang H M, et al. Microstructure and mechanical properties of laser meting deposited 1Cr12Ni2WMoVNb steel[J]. Materials Science and Engineering: A, 2010, 527(18-19): 4804-4809.[42] Qu H P, Wang H M. Microstructure and mechanical properties of laser meting deposited gamma-TiAl intermetallic alloys[J]. Materials Science and Engineering: A, 2007, 466(1-2): 187-194.[43] Xu X, Lin X, Huang W D, et al. Microstructure evolu-tion of laser solid forming of Ti-50wt% Ni alloy[J]. Journal of Alloys and Compounds, 2009, 480(2): 782-787.[44] Liu D, Zhang S Q, Wang H M, et al. Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites[J]. Journal of Alloys and Compounds, 2009, 485(1-2): 156-162.[45] Lin X, Yue T M, Huang W D, et al. Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J]. Acta Materialia, 2006, 54(7): 1901-1915.[46] Qu H P, Zhang S Q, Li A, et al. Microstructure and mechanical properties of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials and Design, 2010, 31(1): 574-582. |