[1] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31. [2] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51:357-377. [3] PLATTEEUW P D A, LOEVEN G J A, BIJL H. Uncertainty quantification applied to the k-epsilon model of turbulence using the probabilistic collocation method:AIAA-2008-2150[R]. Reston:AIAA, 2008. [4] DUNN M C, SHOTORBAN B, FRENDI A. Uncertainty quantification of turbulence model coefficients via Latin hypercube sampling method[J]. Journal of Fluids Engineering, 2011, 133(4):041402. [5] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11):110822. [6] CHEUNG S H, OLIVER T A, PRUDENCIO E E, et al. Bayesian uncertainty analysis with applications to turbulence modeling[J]. Reliability Engineering and System Safety, 2011, 96(9):1137-1149. [7] RAY J, LEFANTZI S, ARUNAJATESAN S, et al. Learning an eddy viscosity model using Shrinkage and Bayesian calibration:A jet-in-crossflow case study[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:Mechanical Engineering, 2018, 4(1):011001. [8] KATO H, OBAYASHI S. Approach for uncertainty of turbulence modeling based on data assimilation technique[J]. Computers & Fluids, 2013, 85:2-7. [9] XIAO H, WU J L, WANG J X, et al. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations:A data-driven, physics-informed Bayesian approach[J]. Journal of Computational Physics, 2016, 324:115-136. [10] DOW E, WANG Q. Quantification of structural uncertainties in the k-ω turbulence model:AIAA-2011-1762[R]. Reston:AIAA, 2011. [11] SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110. [12] 张亦知, 程诚, 范钇彤, 等. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报, 2020, 41(3):123282. ZHANG Y Z, CHENG C, FAN Y T, et al. Data-driven correction of turbulence model with physics-informed constrains in channel flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3):123282(in Chinese). [13] TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development:AIAA-2015-1287[R]. Reston:AIAA, 2015. [14] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fulids, 2019, 31(1):015105. [15] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2015, 305:758-774. [16] SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227. [17] DURAISAMY K, ZHANG Z J, SINGH A P. New approaches in turbulence and transition modeling using data-driven techniques:AIAA-2015-1284[R]. Reston:AIAA, 2015. [18] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992. [19] OLIVER T A, MOSER R D. Bayesian uncertainty quantification applied to RANS turbulence models[J]. Journal of Physics Conference, 2011, 318(4):042032. [20] PIRONNEAU O. On optimum design in fluid mechanics[J]. Journal of Fluid Mechanics, 1974, 64(1):97-110. [21] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):377-401. [22] GILES M B, DUTA M C, MULLER J,et al. Algorithm developments for discrete adjoint methods[J]. AIAA Journal, 2003, 41(2):198-205. [23] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 47(2):33-36, 40. LIU F B,HAO H B,LI D,et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 47(2):33-36, 40(in Chinese). [24] ELLIOTT J, PERAIRE J. Practical three-dimensional aerodynamic design and optimization using unstructured meshes[J]. AIAA Journal, 1997, 35(9):1479-1485. [25] NIELSEN E, ANDERSON W. Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations[J]. AIAA Journal, 1999, 37(11):957-964. [26] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542. [27] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337. [28] BROEREN A P, BRAGG M B, ADDY H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4):1226-1234. [29] LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on a modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(5):3863-3876. |