航空学报 > 2021, Vol. 42 Issue (3): 624590-624590   doi: 10.7527/S1000-6893.2020.24590

水上电动飞机浮筒设计及起飞滑行

赵立杰1,2, 田孟伟1, 李景奎3, 王明阳2, 刘达2   

  1. 1. 沈阳航空航天大学 航空宇航学院, 沈阳 110136;
    2. 辽宁通用航空研究院, 沈阳 110136;
    3. 沈阳航空航天大学 民用航空学院, 沈阳 110136
  • 收稿日期:2020-08-03 修回日期:2020-08-27 发布日期:2020-10-16
  • 通讯作者: 赵立杰 E-mail:zhaolj@sau.edu.cn
  • 基金资助:
    辽宁省自然科学基金(20180551052)

Float design and take-off taxiing of electric seaplanes

ZHAO Lijie1,2, TIAN Mengwei1, LI Jingkui3, WANG Mingyang2, LIU Da2   

  1. 1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;
    2. Liaoning General Aviation Academy, Shenyang 110136, China;
    3. College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, China
  • Received:2020-08-03 Revised:2020-08-27 Published:2020-10-16
  • Supported by:
    Natural Science Foundation of Liaoning Province of China (20180551052)

摘要: 水上飞机起飞滑跑时低速滑行阶段的阻力变化规律对于其设计研究十分重要,而电动水上飞机正常起飞所需最大拉力是否匹配现有电推进系统是飞机改型设计的关键。首先,针对基准浮筒水阻力较大引起的纵向不稳定问题进行了优化设计,优化后浮筒水动性能有明显提高。其次,基于Fluent中的多相流(VOF)模型对水上电动飞机起飞滑跑阶段的力学特征进行了数值模拟计算,着重分析了不同速度下的姿态变化规律、阻力变化及流场特性。最后,对"阻力峰"这一节点下所需电推进系统功率进行了验证计算,结果显示现有装置满足起飞的动力要求;将实际起飞滑跑试验与仿真结果进行对比,结果显示力学特性变化规律基本一致,所得误差在15%之内,验证了仿真计算的可行性,所得结论可为电动水上飞机的研究设计提供借鉴。

关键词: 水上电动飞机, 浮筒优化, 神经网络, 两相流, 飞行实验

Abstract: The law of resistance changes in the low-speed taxiing phase of the seaplane during take-off is highly important for the plane design. Whether the maximum pull required for the normal take-off of the electric seaplane matches the existing electric propulsion system has become the key to the aircraft modification design. The design for the longitudinal instability caused by the large water resistance of the reference buoy is first optimized, significantly improving the hydrodynamic performance of the buoy. Based on the Volume of Fluid (VOF) model in Fluent, numerical simulations of the mechanical characteristics of the hydroelectric aircraft during the take-off taxiing phase are then performed, mainly analyzing the law of attitude changes, resistance changes and flow field characteristics at different speeds. Finally, the electric propulsion system power required at the "resistance peak" node is verified and calculated. The existing device satisfies the power requirements for the take-off. The actual take-off roll test is compared with the simulation results, revealing that the changes in mechanical characteristics are essentially identical. With the error within 15%, the feasibility of the simulation calculation is verified, providing reference for the research and design of electric seaplanes.

Key words: electric seaplanes, float optimization, neural networks, two-phase flow, flight tests

中图分类号: