[1] 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1):245-260. WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):245-260(in Chinese). [2] 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6):1270-1276. HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276(in Chinese). [3] 贺旭照, 乐嘉陵. 曲外锥乘波体进气道实用构型设计和性能分析[J]. 航空学报, 2017, 38(6):120690. HE X Z, LE J L. Design and performance analysis of practical curved cone waverider inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120690(in Chinese). [4] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese). [5] KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49:197-208. [6] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344(in Chinese). [7] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542. [8] JAMESON A, SHANKARAN S, MARTINELLI L. Continuous adjoint method for unstructured grids[J]. AIAA Journal, 2008, 46(5):1226-1239. [9] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):121731. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121731(in Chinese). [10] COPELAND S R, PALACIOS F, ALONSO J J. Adjoint-based gradient calculations for projected-force objective functions in viscous, nonequilibrium hypersonic environments[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015:2015-2082. [11] KLINE H L, ECONOMON T D, ALONSO J J. Mulit-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016:2016-0912. [12] 宋红超, 李鑫, 季路成. 基于离散型伴随方法的单边膨胀喷管优化设计研究[J]. 工程热物理学报, 2017, 38(9):1849-1854. SONG H C, LI X, JI L C. Research on the optimization of unilateral expansion nozzle based on the discrete adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(9):1849-1854(in Chinese). [13] 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报, 2020, 38(1):21-26. GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica, 2020, 38(1):21-26(in Chinese). [14] ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460. [15] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [16] SANDERS R, MORANO E, DE DRUGUET M C. Multidimensional dissipation for upwind schemes:Stability and applications to gas dynamics[J]. Journal of Computational Physics, 1998, 145(2):511-537. [17] KERMANI M, PLETT E. Modified entropy correction formula for the Roe scheme[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001. [18] ANDERSON W K, VENKATAKRISHNAN V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation[J]. Computers & Fluids, 1999, 28(4-5):443-480. [19] SAAD Y, SCHULTZ M H. GMRES:A generalized minimal residual algorithm for solving nonsy mmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. [20] AYACHOUR E H. A fast implementation for GMRES method[J]. Journal of Computational and Applied Mathematics, 2003, 159(2):269-283. [21] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4):151-160. [22] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese). [23] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016:49-53. CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an:Northwestern Polytechnical University, 2016:49-53(in Chinese). [24] 袁亚湘. 非线性优化计算方法[M]. 北京:科学出版社, 2008:201-210. YUAN Y X. Nonlinear optimal progra mming[M]. Beijing:Science Press, 2008:201-210(in Chinese). [25] WEINGERTNER S. SAENGER-The reference concept of the German Hypersonics Technology Program[C]//5th International Aerospace Planes and Hypersonics Technologies Conference. Reston:AIAA, 1993. [26] 贺元元, 倪鸿礼, 乐嘉陵. 一体化高超声速飞行器气动-推进性能评估[J]. 实验流体力学, 2007, 21(2):63-67. HE Y Y, NI H L, LE J L. Evaluation of aero-propulsive performance for integrated hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2):63-67(in Chinese). |