航空学报 > 2021, Vol. 42 Issue (3): 623960-623960   doi: 10.7527/S1000-6893.2020.23960

适用无人机的小型燃料电池控制方法

向乾1, 张晓辉2, 王正平1, 刘莉1   

  1. 1. 北京理工大学 宇航学院, 北京 100081;
    2. 北京理工大学 机电学院, 北京 100081
  • 收稿日期:2020-03-11 修回日期:2020-03-21 发布日期:2020-06-12
  • 通讯作者: 张晓辉 E-mail:shelhuei@163.com

Control method of small fuel cells for UAVs

XIANG Qian1, ZHANG Xiaohui2, WANG Zhengping1, LIU Li1   

  1. 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2020-03-11 Revised:2020-03-21 Published:2020-06-12

摘要: 燃料电池动力系统作为一种长航时电动无人机的动力方案,其燃料电池的控制技术是决定动力系统可靠性和高效性的关键技术。针对用于无人机的小型空冷型开放阴极的质子交换膜燃料电池,考虑面向工程应用的燃料电池整体控制过程,兼顾电堆温度控制和水管理,提出了一种前馈型模糊PID的电堆温度控制方法,同时设计了一种基于安时积分门限法的膜水含量调节策略,以实现对整个燃料电池系统的高效控制。通过搭建燃料电池温度控制与水管理试验平台,对所提出的控制技术进行了试验验证,并与现有温控和水管理方法进行了对比分析。试验结果表明:所提前馈型模糊PID方法在较长时间的燃料电池启动过程中能够较快地达到目标温度,相比于PID方法减少了7%的调节时间,与传统模糊PID方法相当;燃料电池电流持续减小时,所提前馈型模糊PID方法对超调量的抑制效果具有明显优势,其超调量仅为PID方法的34%,为传统模糊PID方法的43%;所提安时积分门限排水控制方法既能防止水淹故障,又可提高燃料经济性,在所给工况中相比现有方法节约了15%的氢气。

关键词: 无人机, 燃料电池, 热管理, 水管理, 前馈模糊PID控制

Abstract: Fuel cell power system is a long endurance power scheme for electric Unmanned Aerial Vehicles (UAVs), and the control technology of fuel cells is critical to the reliability and efficiency of the power system. For small air cooling open cathode proton exchange membrane fuel cells used in UAVs, a feedforward fuzzy PID method for stack temperature control and an ampere-hour integration threshold method for membrane water management are proposed. The proposed methods consider the overall control process of the fuel cells for engineering applications, taking into account simultaneously the fuel cell temperature control and water management to achieve efficient control of the entire fuel cell system. Through the developed test platform, the proposed control technology is tested, verified, and compared with the existing temperature control and water management methods. The results show that the proposed feedforward fuzzy PID, similar to the traditional fuzzy PID, can reach the target temperature faster than the PID method during the long time startup process of the fuel cell, reducing the response time by 7%. When the fuel cell current continues to decrease, the proposed feedforward fuzzy PID, with its overshoot being 34% of that of the PID method and 43% of the traditional fuzzy PID method, exhibits an obvious advantage in inhibiting the overshoot. The proposed ampere-hour integration threshold control method for water management can not only prevent the flooding failure, but improve the fuel economy, saving about 15% of hydrogen in the test compared with the existing water management method.

Key words: UAVs, fuel cells, thermal management, water management, feedforward fuzzy PID control

中图分类号: