[1] HONKAVAARA E, SAARI H, KAIVOSOJA J. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture[J]. Remote Sensing, 2013, 5(10):5006-5039. [2] OSTLER J N, BOWMAN W J, SNYDER D O, et al. Performance flight testing of small, electric powered unmanned aerial vehicles[J]. International Journal of Micro Air Vehicles, 2009, 1(3):155-171. [3] DUNBABIN M, MARQUES L. Robots for environmental monitoring:Significant advancements and applications[J]. IEEE Robotics & Automation Magazine, 2012, 19(1):24-39. [4] LI Z, LIU Y, HAYWARD R, et al. Knowledge-based power line detection for UAV surveillance and inspection systems[C]//2008 23rd International Conference Image and Vision Computing New Zealand. Piscataway:IEEE Press, 2008:1-6. [5] CUTLER M, URE N K, MICHINI B, et al. Comparison of fixed and variable pitch actuators for agile quadrotors[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:6406. [6] DUAN D, ZHAO H, PENG M, et al. Research on optimal design method of tilt-rotor electric propulsion system[C]//Asia-Pacific International Symposium on Aerospace Technology. Berlin:Springer, 2019:1108-1119. [7] CAZENAVE T, PAKMEHR M, FERON E. Peak-seeking control of a DC motor driving a variable pitch propeller[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:6255. [8] CAZENAVE T. Peak-seeking control of propulsion systems[D]. Atlanta:Georgia Institute of Technology, 2012:4-20. [9] COHEN R, MICULESCU D, REILLEY K. Online performance optimization of a DC motor driving a variable pitch propeller[EB/OL]. (2013-10-01)[2020-04-29]. https://arxiv.org/abs/1310.0133. [10] FRESK E, NIKOLAKOPOULOS G. Experimental model derivation and control of a variable pitch propeller equipped quadrotor[C]//2014 IEEE Conference on Control Applications (CCA). Piscataway:IEEE Press, 2014:723-729. [11] SHENG S, SUN C. Control and optimization of a variable-pitch quadrotor with minimum power consumption[J]. Energies, 2016, 9(4):232. [12] HENDERSON T, PAPANIKOLOPOULOS N. Power-minimizing control of a variable-pitch propulsion system for versatile unmanned aerial vehicles[C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2019:4148-4153. [13] LARMINIE J, LOWRY J. Electric vehicle technology explained[M]. Manhattan:John Wiley & Sons, 2012:145-185. [14] MCDONALD R A. Electric propulsion modeling for conceptual aircraft design[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:0536. [15] MCDONALD R A. Optimal propeller pitch scheduling and propeller——airframe matching for conceptual design[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2015:3190. [16] MCDONALD R A. Modeling of electric motor driven variable pitch propellers for conceptual aircraft design[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016:1025. [17] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006:55-100. LIU P Q. Theory and application of airscrew[M]. Beijing:Beihang University Press, 2006:55-100(in Chinese). [18] TJHAI C. Developing stochastic model of thrust and flight dynamics for small UAVs[D]. Twin Cities:University of Minnesota Twin Cities, 2013:4-48. [19] 王甜甜, 刘强. 基于BAS-BP模型的风暴潮灾害损失预测[J]. 海洋环境科学, 2018, 37(3):457-463. WANG T T, LIU Q. The assessment of storm surge disaster loss based on BAS-BP model[J]. Marine Environmental Science, 2018, 37(3):457-463(in Chinese). [20] 赵耀, 熊智, 田世伟, 等. 基于SAR图像匹配结果可信度评价的INS/SAR自适应Kalman滤波算法[J]. 航空学报, 2019, 40(8):322850. ZHAO Y, XIONG Z, TIAN S W, et al. INS/SAR adaptive Kalman filtering algorithm based on credibility evaluation of SAR image matching results[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):322850(in Chinese). |