航空学报 > 2020, Vol. 41 Issue (10): 123618-123618   doi: 10.7527/S1000-6893.2019.23618

基于脑电功率谱密度的作业人员脑力负荷评估方法

张洁1, 庞丽萍1, 完颜笑如1, 陈浩1, 王鑫2, 梁晋2   

  1. 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 中国船舶工业综合技术经济研究院 船舶人因工程实验室, 北京 100081
  • 收稿日期:2019-10-31 修回日期:2020-01-03 发布日期:2020-01-02
  • 通讯作者: 完颜笑如 E-mail:wanyanxiaoru@buaa.edu.cn
  • 基金资助:
    国家自然科学基金委员会与中国民用航空局联合资助项目(U1733118);辽宁省"兴辽英才计划"(XLYC1802092)

Method for operator mental workload assessment based on power spectral density of EEG

ZHANG Jie1, PANG Liping1, WANYAN Xiaoru1, CHEN Hao1, WANG Xin2, LIANG Jin2   

  1. 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Marine Human Factors Engineering Lab, China Institute of Marine Technology & Economy, Beijing 100081, China
  • Received:2019-10-31 Revised:2020-01-03 Published:2020-01-02
  • Supported by:
    The Jointly Program of National Natural Science Foundation of China and Civil Aviation Administration of China (U1733118);The Liao Ning Revitalization Talents Program (XLYC1802092)

摘要: 脑力负荷状态的准确识别对减少因作业人员无效脑力负荷导致的人因事故具有重要意义。针对人-机系统中作业人员脑力负荷客观评估问题开展了基于MATB-Ⅱ平台的3种不同脑力负荷水平下的航空情境实验,记录16名被试的NASA任务负荷指数(NASA-TLX)量表数据和脑电(EEG)信号,提出了一种基于脑电功率谱密度(PSD)和支持向量机(SVM)的个体脑力负荷评估方法。结果表明:随着实验设计脑力负荷水平增加,被试的主观脑力负荷得分显著提高(p<0.001),这表明该实验任务设计较好地诱发了低负荷、中负荷和高负荷情境。在此基础上,通过网格搜索法确定个体脑力负荷评估模型的统一优化参数,惩罚系数取3 000,核函数参数取0.000 1,模型测试正确率达到0.966 5±0.029 8,宏平均的受试者工作特征曲线下的面积(Macro-AUC)达到0.991 0±0.011 4。本文为作业人员脑力负荷状态的客观和准确评估提供了一种新的办法,为后期作业人员脑力负荷状态的实时判别提供模型基础。

关键词: 脑力负荷, NASA任务负荷指数, 功率谱密度, 支持向量机, 个体评估模型

Abstract: The accurate recognition of mental workload levels is of great significance to reduce human accidents caused by operators with invalid mental workload. This paper focuses on the objective mental workload assessment of operators in human-machine system. An aviation situational experiment based on MATB-Ⅱ was carried out at three levels of mental workload. Sixteen subjects were asked to fill in the NASA-Task Load Index (NASA-TLX) scale and the Electroencephalogram (EEG) results during the experiment were recorded. By analyzing the collected subjective and physiological data, a subject-specified mental workload assessment method was proposed using the Power Spectral Density (PSD) of EEG and the Support Vector Machine (SVM). The results show that the subjective mental workload scores increase significantly (p<0.001) with the increase of designed mental workload levels, indicating that the experimental design successfully induces different mental workload scenarios. Based on the rationality of the experimental design, the subject-specified mental workload assessment models are established, and the parameters of these models are optimized by grid search and then unified as the penalty parameter of 3 000 and the kernel function parameter of 0.000 1. The test accuracy reaches 0.966 5±0.029 8, and the area under Macro-Averaging receiver operating Characteristic curve (Macro-AUC) reaches 0.991 0±0.011 4. Thus, the models provide a new approach for the objective and accurate assessment of mental workload, providing a basis for the real-time discrimination of mental workload.

Key words: mental workload, NASA-task load index, power spectral density, support vector machine, subject-specified discrimination model

中图分类号: