[1] 岳春国, 李进贤, 侯晓, 等. 变推力液体火箭发动机综述[J].中国科学E辑:技术科学, 2009, 39(3):464-468. YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J].Science in China Series E:Technological Sciences, 2009, 39(3):464-468(in Chinese). [2] 袁宇. 猎鹰火箭发动机设计特点[J].太空探索, 2017(7):19-20. YUAN Y. Design features of falcon rocket engine[J].Space Exploration, 2017(7):19-20(in Chinese). [3] 安鹏, 姚世强, 王京丽, 等. 针栓式喷注器的特点及设计方法[J].导弹与航天运载技术, 2016(3):50-54. AN P, YAO S Q, WANG J L, et al. Characteristics and design of pintle injector[J].Missiles and Space Vehicles, 2016(3):50-54(in Chinese). [4] DRESSLER G A. Summary of deep throttling rocket engines with emphasis on apollo lmde:AIAA-2006-5220[R]. Reston:AIAA, 2006. [5] ELVERUM G W, STAUDHAMMER P, MILLER J, et al. The descent engine for the lunar module:AIAA-1967-0521[R]. Reston:AIAA, 1967. [6] GILROY R, SACKHEIM R. The lunar module descent engine-A historical summary:AIAA-1989-2385[R]. Reston:AIAA, 1989. [7] CHIANESE S G, MAJAMAKI A N, GAVITT K R. NGST TR202 throttling lunar descent pintle engine[C]//Proceedings of the 54th JANNAF Joint Propulsion Meeting, 2007. [8] MAJAMAKI A N, CHIANESE S G, KIM T S. TR202 deep throttling lunar descent engine pintle injector technology development status[C]//Proceedings of the 55th JANNAF Joint Propulsion Meeting, 2008. [9] MUELIER T, DRESSIER G. TRW 40 klbf LOX/RP-1 low cost pintle engine test results:AIAA-2000-3863[R]. Reston:AIAA, 2000. [10] BEDARD M J, FELDMAN T W, RETTENMAIER A, et al. Student design/build/test of a throttleable LOX-LCH4 thrust chamber:AIAA-2012-3883[R]. Reston:AIAA, 2012. [11] BEDARD M J, FELDMAN T, RETTENMAIER A, et al. Student design/build/test of a throttleable LOX/LCH4 thrust chamber:AIAA-2012-3883[R]. Reston:AIAA, 2012. [12] GROMSKI J M, MAJAMAKI A N, CHIANESE S G, et al. Northrop Grumman TR202 LOX/LH2 deep throttling engine technology project status:AIAA-2010-6725[R]. Reston:AIAA, 2010. [13] CHIANESE S G, GROMSKI J M, WEINSTOCK V, et al. Northrop Grumman TR202 LOX-GH2 deep throttling pintle injector performance stability and heat transfer measurements[C]//Proceedings of the 57th JANNAF Joint Propulsion Meeting, 2010. [14] GAVITT K, MUELLER T, WONG T, et al. TRW LCPE 650 klbf LOX/LH2 test results:AIAA-2000-3853[R]. Reston:AIAA, 2000. [15] GAVITT K R, MUELLER T J. Testing of the 650 klbf LOX/LH2 low cost pintle engine (LCPE):AIAA-2001-3987[R]. Reston:AIAA, 2001. [16] 王福民, 旷武岳. 美国太空探索技术公司(SpaceX)及其"猎鹰"系列运载火箭[R]. 西安:西安航天动力研究所, 2012. WANG F M, KUANG W Y. SpaceX and its falcon series of launch vehicles[R]. Xi'an:Xi'an Aerospace Propulsion Institute, 2012(in Chinese). [17] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机[J].卫星与网络, 2017(6):40-41. ZHANG X S. Foundation of falcon rocket:Upgrading merlin engine[J].Satellite and Network, 2017(6):40-41(in Chinese). [18] 刘昌波, 兰晓辉, 李福云. 载人登月舱下降发动机技木研究[J].火箭推进, 2011, 37(2):8-13. LIU C B, LAN X H, LI F Y. Conceptual schemes of china lunar excursion module descent engine[J].Journal of Rocket Propulsion, 2011, 37(2):8-13(in Chinese). [19] HEISTER S D. Pintle injectors,handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:647-655. [20] BOETTCHER P A, DAMAZO J S, SHEPHERD J E, et al. Visualization of transverse annular jets[C]//62nd Annual Meeting of the APS Division of Fluid Dynamic. College Park:American Physical Society, 2009. [21] FANG X X, SHEN C B. Study on atomization and combustion characteristics of LOX/Methane pintle injectors[J].Acta Astronautica, 2017, 136:369-379. [22] 方昕昕. 液氧/甲烷针栓式喷注器雾化及燃烧特性研究[D]. 长沙:国防科技大学, 2015:11. FANG X X. Study on the atomization and combustion characteristics of lox/methane pintle injectors[D]. Changsha:National University of Defense Technology, 2015:11(in Chinese). [23] SANTORO R J, MERKLE C L. Main chamber and preburner injector technology:NCC 8-46[R]. Washington, D.C.:NASA, 1999. [24] SAKAKI K, KAKUDO H, NAKAYA S, et al. Combustion characteristics of ethanol/liquid-oxygen rocket-engine combustor with planar pintle injector[J].Journal of Propulsion and Power, 2017, 33(2):514-521. [25] YU K, SON M, KOO J. Effects of opening distance on liquid-gas spray of pintle injector under atmospheric condition[J].Journal of the Korean Society for Aeronautical and Space Sciences, 2015, 43(7):585-592. [26] SON M, YU K, RADHAKRISHNAN K, et al. Verification on spray simulation of a pintle injector for liquid rocket engine[J].Journal of Thermal Science, 2016, 25(1):90-96. [27] SON M, YU K, KOO J, et al. Injection condition effects of a pintle injector for liquid rocket engines on atomization performances[J].Journal of ILASS-Korea, 2015, 20(5):114-120. [28] SON M, YU K, KOO J, et al. Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector[J].Journal of Thermal Science, 2015, 24(1):37-43. [29] RADHAKRISHNAN K, SON M, LEE K, et al. Effect of injection conditions on mixing performance of pintle injector for liquid rocket engine[J].Acta Astronautica, 2018, 150:105-116. [30] CHENG P, LI Q L, XU S, et al. On the prediction of spray angle of liquid-liquid pintle injectors[J].Acta Astronautica, 2017, 138:145-151. [31] SAKAKI K, KAKUDO H, NAKAYA S, et al. Optical measurements of ethanol/liquid oxygen rocket engine combustor with planar pintle injector:AIAA-2015-3845[R]. Reston:AIAA, 2015. [32] SAKAKI K, KAKUDO H, NAKAYA S, et al. Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector:AIAA-2016-5080[R]. Reston:AIAA, 2016. [33] 王凯, 雷凡培, 李鹏飞, 等. 壁面边界对撞击合成动量角的影响研究[J].推进技术, 2019, 40(10):2288-2295. WANG K, LEI F P, LI P F, et al. Effects of wall boundary on the resultant momentum angle of impinging jets[J].Journal of Propulsion Technology, 2019, 40(10):2288-2295(in Chinese). [34] FUSTER D, BAGUÉ A, POPINET S, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J].International Journal of Multiphase Flow, 2009, 35(6):550-565. [35] POPINET S. An accurate adaptive solver for surface-tension-driven interfacial flows[J].Journal of Computational Physics, 2009, 228(16):5838-5866. [36] 王凯, 李鹏飞, 杨国华. 相邻离心式喷嘴液膜撞击雾化过程仿真[J].推进技术, 2017, 38(2):408-415. WANG K, LI P F, YANG G H, et al. Simulation on liquid films impact atomization process of adjacent pressure swirl injectors[J].Journal of Propulsion Technology, 2017, 38(2):408-415(in Chinese). [37] 杨国华, 王凯, 张民庆, 等. 基于树形自适应网格的旋流液膜雾化过程仿真[J].推进技术, 2018, 39(3):556-564. YANG G H, WANG K, ZHANG M Q, et al. Simulation on swirl liquid sheet spray process based on an octree adaptive mesh refinement[J].Journal of Propulsion Technology, 2018, 39(3):556-564(in Chinese). [38] 王凯, 杨国华, 李鹏飞. 基于Gerris的离心式喷嘴锥形液膜破碎过程数值模拟[J].推进技术, 2018, 39(5):1041-1050. WANG K, YANG G H, LI P F, et al. Numerical simulation on conical liquid sheet breakup process of pressure swirl injector based on Gerris[J].Journal of Propulsion Technology, 2018, 39(5):1041-1050(in Chinese). [39] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J].Advances in Mechanics, 2011, 41(5):562-589(in Chinese). [40] 王凯, 杨国华, 李鹏飞, 等. 离心式喷嘴内部流动过程数值仿真分析[J].火箭推进, 2016, 42(4):14-20. WANG K, YANG G H, LI P F, et al. Numerical simulation of internal flow process in pressure swirl injector[J].Journal of Rocket Propulsion, 2016, 42(4):14-20(in Chinese). [41] 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴自激振荡特性试验[J].航空学报, 2018, 39(9):122189. XUE S J, LIU H J, HONG L, et al. Test on self-excited oscillation characteristics of an open-end swirl injector with thick liquid film[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122189(in Chinese). [42] 薛帅杰, 刘红军, 陈鹏飞, 等. 注气离心喷嘴喷注过程稳定性试验[J].航空学报, 2019, 40(7):122697. XUE S J, LIU H J, CHEN P F, et al. Test on spray stability of swirl injector with gas injection[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122697(in Chinese). |