[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the First AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2003, 40(5):875-882. [2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the Second AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178. [3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the Third AIAA CFD Drag Prediction Workshop[J]. Journal of Aircraft, 2008, 45(3):781-798. [4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the Fourth AIAA Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089. [5] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R].Reston, VA:AIAA, 2008. [6] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model (invited):AIAA-2010-4218[R]. Reston,VA:AIAA, 2010. [7] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel (invited):AIAA-2011-1126[R]. Reston, VA:AIAA, 2011. [8] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213. [9] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese). [10] DAVID H. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston, VA:AIAA, 2013. [11] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330. [12] TINOCO E N, BRODERSEN O P, KEYE S, et al. Summary of data from the Sixth AIAA CFD Drag Prediction Workshop:CRM case 2 to 5:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017. [13] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston, VA:AIAA, 2012. [14] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249. [15] SONI B K. Grid generation for internal flow configuration[J]. Computers & Mathematics with Applications, 1992, 24(5-6):191-201. [16] 孙岩, 邓小刚, 王运涛, 等. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10):228-233. SUN Y, DENG X G, WANG Y T, et al. Application of structural dynamic grid method based on RBF_TFI on wind tunnel static aero-elastic modification[J]. Engineering Mechanics, 2014, 31(10):228-233(in Chinese). [17] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):24-44. [18] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111. [19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605. [20] CHEN R F, WANG Z J. Fast, Block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245. [21] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese). |