[1] EBRANHIMI H B, LANKFORD D W. Numerical study of phenomena affecting the prediction fo scramjet combustor and nozzle performance:AIAA-1993-0024[R]. Reston:AIAA, 1993.
[2] SPAID F W, KEENER E R. Experimental results for a hypersonic nozzle/afterbody flow field:AIAA-1992-3915[R]. Reston:AIAA, 1992.
[3] RUFFIN S M, VENKATAPATHY E. Single expansion ramp nozzle simulation:AIAA-1992-0387[R]. Reston:AIAA, 1992.
[4] TATUM K, MONTA W, WITTE D, et al. Analysis of generic scramjet external nozzle flowfields employing simulant gases:AIAA-1990-5242[R]. Reston:AIAA, 1990.
[5] WATANABE S. Scramjet nozzle experiment with hypersonic external flow[J]. Journal of Propulsion and Power, 1993, 9(4):521-528.
[6] MITANI T, UEDA S. Validation studies of scramjet nozzle performance[J]. Journal of Propulsion and Power, 1993, 9(5):725-730.
[7] HIRAIWA T, TOMIOKA S, UDEA S, et al. Performance variation of scramjet nozzle at various nozzle pressure ratios[J]. Journal of Propulsion and Power, 1995, 11(3):403-408.
[8] MITANI T, TANI K, SATO S, et al. Experimental validation of scramjet nozzle performance:AIAA-1992-3290[R]. Reston:AIAA, 1992.
[9] HIRSCHEN C, GRUHN P, GVLHAN A. Influence of heat capacity ratio on the interaction between the external flow and nozzle flow of a scramjet:AIAA-2006-8095[R]. Reston:AIAA, 2006.
[10] HIRSCHEN C, GVLHAN A. Influence of heat capacity ratio on pressure and nozzle flow of scramjets[J]. Journal of Propulsion and Power, 2009, 25(2):303-311.
[11] HIRSCHEN C, GVLHAN A, BECK W H, et al. Measurement of flow properties and thrust on scramjet nozzle using pressure-sensitive paint[J]. Journal of Propulsion and Power, 2009, 25(2):267-280.
[12] HIRSCHEN C. Experimental study of the interaction between internal and external flows of a scramjet nozzle using various diagnostic techniques:AIAA-2007-5088[R]. Reston:AIAA, 2007.
[13] HIRSCHEN C, GVLHAN A, BECK W H, et al. Experimental study of a scramjet nozzle flow using the pressure-sensitive-paint method[J]. Journal of Propulsion and Power, 2008, 24(4):662-672.
[14] HIRSCHEN C, GVLHAN A. Infrared thermography and pitot pressure measurements of a scramjet nozzle flowfield[J]. Journal of Propulsion and Power, 2009, 25(5):1108-1120.
[15] 李斌, 王学占, 刘仙名. 大迎角侧向多喷干扰流场特性数值模拟[J]. 航空学报, 2015, 36(9):2828-2839. LI B, WANG X Z, LIU X M. Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2828-2839(in Chinese).
[16] 贺旭照, 秦思, 曾学军, 等. 模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题试验方案研究[J]. 推进技术, 2014, 35(10):1310-1316. HE X Z, QIN S, ZENG X J, et al. Experiment scheme research on afterbody nozzle plume interferenece of air-breathing hypersonic vehicle fly condition[J]. Journal of Propulsion Technology, 2014, 35(10):1310-1316(in Chinese).
[17] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:37-50. LI Z F. Special wind tunnel experiment technology[M]. Beijing:Aviation Industry Press, 2010:37-50(in Chinese).
[18] ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. New York:John Wiley and Sons, Inc., 1977:112-266.
[19] 贺旭照, 赵慧勇, 乐嘉陵. 考虑可压缩与热传导的壁面函数边界条件及其应用[J]. 空气动力学学报, 2006, 24(4):450-453. HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamic Sinica, 2006, 24(4):450-453(in Chinese).
[20] 贺旭照. 高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求解[D]. 绵阳:中国空气动力研究与发展中心, 2007. HE X Z. Numerically simulate aero-force & heat of hypersonic vehicles and region marching method for supersonic flow simulation[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese). |