[1] EKATERINARIS J A, CHANDRASEKHARA M S, PLATZER M F. Recent development in dynamic stall measurements, computations and control: AIAA-2005-1296[R]. Reston: AIAA, 2005.
[2] CHANDRASEKHARA M S, WILDER M C, CARR L W. Compressible dynamic stall control: A comparison of different approaches: AIAA-1999-3122[R]. Reston: AIAA, 1999.
[3] MARTIN P, WILSON J, BERRY J, et al. Passive control of compressible dynamic stall: AIAA-2008-7506[R]. Reston: AIAA, 2008.
[4] MAI H, DIETZ G, GEISSLER W, et al. Dynamic stall control by leading-edge vortex generators[J]. Journal of the American Helicopter Society, 2008, 53(1): 26-36.
[5] PAPE A L, COSTES M, RICHEZ F, et al. Dynamic stall control using deployable leading-edge vortex generators[J]. AIAA Journal, 2012, 50(10): 2135-2145.
[6] RAJU R, MITTAL R, CATTAFESTA L. Dynamics of airfoil separation control using zero-net mass-flux forcing[J]. AIAA Journal, 2008, 46(12): 3103-3115.
[7] DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal, 2015, 53(3): 794-797.
[8] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234. LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221-234 (in Chinese).
[9] ZHAO G Q, ZHAO Q J. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1051-1061.
[10] ZHAO G Q, ZHAO Q J, GU Y S, et al. Experimental investigations for parametric effects of dual synthetic jets on delaying stall of a thick airfoil[J]. Chinese Journal of Aeronautics, 2016, 29(2): 346-357.
[11] POST M L, CORKE T C. Separation control using plasmas actuators-stationary and oscillating airfoils: AIAA-2004-0841[R]. Reston: AIAA, 2004.
[12] CORKE T C, POST M L. Overview of plasma flow control concepts, optimization, and applications: AIAA-2005-0563[R]. Reston: AIAA, 2005.
[13] POST M L, CORKE T C. Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135.
[14] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报,2010, 55(31): 3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin, 2010, 55(31): 3060-3068 (in Chinese).
[15] BARLAS T K, VAN KUIK G A M. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1): 1-27.
[16] STRAUB F K. A feasibility study of using smart materials for rotor control[J]. Smart Materials and Structures, 1996, 5(1): 1-10.
[17] GEISSLER W, DIETZ G, MAI H, et al. Dynamic stall control investigation on a full size chord blade section[C]//30th European Rotorcraft Forum. Cologne: German Aerospace Center (DLR), 2004.
[18] GEISSLER W, DIETZ G, MAI H. Dynamic stall on a supercritical airfoil[C]//29th European Rotorcraft Forum. Cologne: German Aerospace Center (DLR), 2003.
[19] WERNICKE K G, WERNICKE R K. Inflatable wing leading edges for high life and deicing: NASA Tech Briefs[R]. Washington, D.C.: NASA, 2000.
[20] 蒋跃文, 叶正寅, 张正科. 充气结构与流场的耦合求解方法[J]. 力学学报, 2010, 42(1): 1-7. JIANG Y W, YE Z Y, ZHANG Z K. Model of inflatable structure/fluid interaction for variable leading edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 1-7 (in Chinese).
[21] MCALISTER K W, PUCCI S L, MCCROSKEY W J, et al. Experimental study of dynamic stall on advanced airfoil section: NASA-TM-84245-VOL-2[R]. Washington, D.C.: NASA Ames Research Center, 1982. |