[1] CURRAN E T. Scramjet engines:the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6):1138-1148.
[2] MCCLINTON C R. X-43-scramjet power breaks the hypersonic barrier dryden lectureship in research for 2006:AIAA-2006-1[R]. Reston:AIAA, 2006.
[3] 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5):449-471. YU G, FAN X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5):449-471(in Chinese).
[4] YEOM H W, SEO B G, SUNG H G. Numerical analysis of a scramjet engine with intake sidewalls and cavity flameholder[J]. AIAA Journal, 2013, 51(7):1566-1575.
[5] YANG Q C, CHANG J T, BAO W. Relative time scale analysis for pressure propagation during ignition process of a scramjet[J]. Aerospace Science and Technology, 2014, 39(1):206-210.
[6] WANG Z G, WANG H B, SUN M B. Review of cavitystabilized combustion for scramjet applications[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(14):2718-2735.
[7] SEGAL C. The scramjet engine:processes and characteristics[M]. New York:Cambridge University Press, 2009.
[8] 王振国, 孙明波. 超声速湍流流动、燃烧的建模与大涡模拟[M]. 北京:科学出版社, 2013. WANG Z G, SUN M B. Modeing and large eddy simulation of supersonic turbulent flow and combustion[M]. Beijing:Science Press, 2013(in Chinese).
[9] 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1):261-273. YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interaction in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):261-273(in Chinese).
[10] BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015, 76(1):24-41.
[11] JU Y, SUN W. Plasma assisted combustion:dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48(1):21-83.
[12] DO H, CAPPELLI M A, MUNGAL M G. Plasma assisted cavity flame ignition in supersonic flows[J]. Combustion and Flame, 2010, 157(9):1783-1794.
[13] LIEPMANN H W, LAUFER J. Investigation of free turbulent mixing:Technical Report 1257[R]. Washington, D.C.:NACA, 1947.
[14] MOSER R D, ROGERS M M. Mixing transition and the cascade to small scales in a plane mixing layer[J]. Physics of Fluids A, 1991, 3(5):1128-1134.
[15] WALLACE J M, FOSS J F. The measurement of vorticity in turbulent flows[J]. Annual Review of Fluid Mechanics, 1994, 27(1):469-514.
[16] ZHOU Q, HE F, SHEN M Y. Direct numerical simulation of a spatially developing compressible plane mixing layer:flow structures and mean flow properties[J]. Journal of Fluid Mechanics, 2012, 711(1):437-468.
[17] BROWN G L, ROSHKO A. On density effects and large structure in turbulent mixing layers[J]. Journal of Fluid Mechanics, 1974, 64(4):775-816.
[18] LOUCKS R B, WALLACE J M. Velocity and velocity gradient based properties of a turbulent plane mixing layer[J]. Journal of Fluid Mechanics, 2012, 669(1):280-319.
[19] WINANT C D, BROWAND F K. Vortex pairing:the mechanism of turbulent mixing-layer growth at moderate Reynolds number[J]. Journal of Fluid Mechanics, 1974, 63(2):237-255.
[20] CORCOS G M, SHERMAN F S. The mixing layer:deterministic models of a turbulent flow. Part 1. Introduction and the two-dimensional flow[J]. Journal of Fluid Mechanics, 1984, 139(1):29-65.
[21] METCALFE R W, HUSSAIN A K M F, MENON S, et al. Coherent structures in a turbulent mixing layer:A comparison between direct numerical simulation and experiments[J]. Turbulent Shear Flows, 1987, 5:110-123.
[22] HUANG L S, HO C M. Small-scale transition in a plane mixing layer[J]. Journal of Fluid Mechanics, 1990, 210(1):475-500.
[23] DIMOTAKIS P E, BROWN G L. The mixing layer at high Reynolds number:large-structure dynamics and entrainment[J]. Journal of Fluid Mechanics, 1976, 78(3):535-560.
[24] CHANDRSUDA A, MEHTA R D, WEIR A D, et al. Effect of free stream turbulence on large structure in turbulent mixing layers[J]. Journal of Fluid Mechanics, 1978, 85(4):693-704.
[25] PIERREHUMBERT R T, WIDNALL S E. The two- and three-dimensional instabilities of a spatially periodic shear layer[J]. Journal of Fluid Mechanics, 1982, 114(1):59-82.
[26] HO C M, HUANG L S. Subharmonics and vortex merging in mixing layers[J]. Journal of Fluid Mechanics, 1982, 119(1):443-473.
[27] BROWAND F K, TROUTT T T. A note on spanwise structure in the two-dimensional mixing layer[J]. Journal of Fluid Mechanics, 1980, 97(4):771-781.
[28] JIMENEZ J. A spanwise structure in the plane shear layer[J]. Journal of Fluid Mechanics, 1983, 132(1):319-336.
[29] BERNAL L P, ROSHKO A. Streamwise vortex struc-ture in plane mixing layers[J]. Journal of Fluid Mechanics, 1986, 170(1):499-525.
[30] LASHERAS J C, CHO J S, MAXWORTHY T. On the origin and evolution of streamwise vortical structures in a plane, free shear layer[J]. Journal of Fluid Mechanics, 1986, 172(1):231-258.
[31] LASHERAS J C, CHOI H. Three-dimensional insta-bility of a plane, free shear layer:an experimental study on the formation and evolution of streamwise vortices[J]. Journal of Fluid Mechanics, 1988, 189(1):53-86.
[32] MOSER R D, ROGERS M M. Coherent structures in a simulated turbulent mixing layer:NASA-TM-103980[R]. Washington, D.C.:NASA, 1992.
[33] MOSER R D, ROGERS M M. The three-dimensional evolution of a plane mixing layer:pairing and transition to turbulence[J]. Journal of Fluid Mechanics, 1993, 247(1):275-320.
[34] ORTWERTH P J, SHINE A. On the scaling of plane turbulent shear layers:TR-1977-118[R]. AFWL, 1977.
[35] BOGDANOFF D W. Compressibility effects in turbulent shear layers[J]. AIAA Journal, 1983, 21(6):926-927.
[36] PAPAMOSCHOU D, ROSHKO A. The compressible turbulent shear layer:an experimental study[J]. Journal of Fluid Mechanics, 1988, 197(1):453-477.
[37] SLESSOR M D, ZHUANG M, DIMOTAKIS P E. Turbulent shear-layer mixing growth-rate compressibility scaling[J]. Journal of Fluid Mechanics, 2000, 414(1):35-45.
[38] CLEMENS N T, MUNGAL M G. Two and three-dimensional effects in the supersonic mixing layer[J]. AIAA Journal, 1992, 30(4):973-981.
[39] CLEMENS N T, MUNGAL M G. Large-scale structure and entrainment in the supersonic mixing layer[J]. Journal of Fluid Mechanics, 1995, 284(1):171-216.
[40] ROSSMANN T, MUNGAL M G, HANSON R K. Evolution and growth of large-scale structures in high compressibility mixing layers[J]. Journal of Turbulence, 2002, 3(1):1-19.
[41] WATANABE S, MUNGAL M G. Velocity fields in mixing-enhanced compressible shear layers[J]. Journal of Fluid Mechanics, 2005, 522(1):141-177.
[42] LELE S K. Direct numerical simulation of compressible free shear flows:AIAA-1989-0374[R]. Reston:AIAA, 1989.
[43] VREMAN B, KUERTEN H, GEURTS B. Shocks in di-rect numerical simulation of the confined three-dimensional mixing layer[J]. Physics of Fluids, 1995, 7(9):2105-2107.
[44] FREUND J B, LELE S K, MOIN P. Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate[J]. Journal of Fluid Mechanics, 2000, 421(1):229-267.
[45] ELLIOTT G S, SAMIMY M. Compressibility effects in free shear layers[J]. Physics of Fluids A, 1990, 2:1231-1240.
[46] GOEBEL S G, DUTTON J C. Experimental study of compressible turbulent mixing layers[J]. AIAA Journal, 1991, 29(4):538-546.
[47] GRUBER M R, MESSERSMITH N L, DUTTON J C. Three-dimensional velocity field in a compressible mixing layer[J]. AIAA Journal, 1993, 31(11):2061-2067.
[48] URBAN W D, MUNGAL M G. Planar velocity measurements in compressible mixing layers[J]. Journal of Fluid Mechanics, 2001, 431(1):189-222.
[49] OLSEN M G, DUTTON J C. Planar velocity meas-urements in a weakly compressible mixing layer[J]. Journal of Fluid Mechanics, 2003, 486(1):51-77.
[50] PANTANO C, SARKAR S. A study of compressibility effects in the high-speed turbulent shear layer using di-rect simulation[J]. Journal of Fluid Mechanics, 2002, 451(1):329-371.
[51] FU S, LI Q B. Numerical simulation of compressible mixing layers[J]. International Journal of Heat and Fluid Flow, 2006, 27(5):895-901.
[52] JACKSON T L, HUSSAINI M Y. An asymptotic analysis of supersonic reacting mixing layers[J]. Combustion Science and Technology, 1988, 57(4-6):129-140.
[53] GOSCH C E, JACKSON T L. Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry[J]. Physics of Fluids A, 1991, 3(12):3087-3097.
[54] JU Y, NⅡOKA T. Ignition analysis of unpremixed reactants with chain mechanism in a supersonic mixing layer[J]. AIAA Journal, 1993, 31(5):863-868.
[55] FIGUEIRA DA SILVA L F, DESHAIES B, CHAMPION M, et al. Some specific aspects of combustion in supersonic H2-air laminar mixing layers[J]. Combustion Science and Technology, 1993, 89(5-6):317-333.
[56] JU Y, NⅡOKA T. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer[J]. Combustion and Flame, 1994, 99(2):240-246.
[57] IM H G, CHAO B H, BECHTOLD J K, et al. Analysis of thermal ignition in the supersonic mixing layer[J]. AIAA Journal, 1994, 32(2):341-349.
[58] JU Y, NⅡOKA T. Ignition simulation of methane/hydrogen mixtures in a supersonic mixing layer[J]. Combustion and Flame, 1995, 102(4):462-470.
[59] TREVIÑO C, LIÑÁN A. Mixing layer ignition of hydrogen[J]. Combustion and Flame, 1995, 103(2):129-141.
[60] IM H G, HELENBROOK B T, LEE S R, et al. Ignition in the supersonic hydrogen/air mixing layer with reduced reaction mechanisms[J]. Journal of Fluid Mechanics, 1996, 322(1):275-296.
[61] NISHIOKA M, LAW C K. A numerical study of ignition in the supersonic hydrogen/air laminar mixing layer[J]. Combustion and Flame, 1997, 108(2):199-219.
[62] CHAKRABORTY D, NAGARAI UPADHYAYA H V, PAUL P J, et al. A thermo-chemical exploration of a two-dimensional reacting supersonic mixing layer[J]. Physics of Fluids, 1997, 9(11):3513-3522.
[63] HAN B, SUNG C J, NISHIOKA M. Effect of vitiated air on hydrogen ignition in a supersonic laminar mixing layer:AIAA-2002-0332[R]. Reston:AIAA, 2002.
[64] TIEN J H, STALKER R J. Release of chemical energy by combustion in a supersonic mixing layer of hydrogen and air[J]. Combustion and Flame, 2002, 131(3):329-348.
[65] ZAMBON A C, SRIRAM A T, CHELLIAH H K. Development and implementation of explicit reduced reaction models in supersonic reacting shear flow simulations:AIAA-2007-0772[R]. Reston:AIAA, 2007.
[66] CHEN J H, ZHANG H Q, LI Z Y, et al. Investigation on extremal and critical characteristics of ignition time for H2/O2 combustion system and their applications[J]. Science in China Series E:Technological Sciences, 2009, 52(5):1161-1166.
[67] STARIK A M, TITOVA N S, BEZGIN L V, et al. The promotion of ignition in a supersonic H2-air mixing layer by laser-induced excitation of O2 molecules:Numerical study[J]. Combustion and Flame, 2009, 156(8):1641-1652.
[68] TAHSINI A M. Turbulence and additive effects on ignition delay in supersonic combustion[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(1):93-99.
[69] ZHANG Y L, WANG B, ZHANG H Q. Ignition, flame propagation and extinction in the supersonic mixing layer flow[J]. Science in China Series E:Technological Sciences, 2014, 57(11):2256-2264.
[70] ZHANG Q, WANG B, ZHANG Y L, et al. A theoretical prediction method of ignition distance in supersonic mix-ing layer[J]. Journal of Rocket Propulsion, 2015, 41(1):50-55.
[71] JU Y, NⅡOKA T. Extinction of a diffusion flame in supersonic mixing layer[J]. Combustion and Flame, 1994, 97(4):423-428.
[72] MENON S, FERNANDO E. A numerical study of mixing and chemical heat release in supersonic mixing layers:AIAA-1990-0152[R]. Reston:AIAA, 1990.
[73] GIVI P, MADNIA C K, STEINBERGER C J, et al. Effects of compressibility and heat release in a high speed reacting mixing layer[J]. Combustion Science and Technology, 1991, 78(1-3):33-68.
[74] PLANCHE O H, REYNOLDS W C. Compressibility effects on the supersonic reacting mixing layer:AIAA-1991-0739[R]. Reston:AIAA, 1991.
[75] PLANCHE O, REYNOLDS W C. Heat release effects on mixing in supersonic reacting free shear-layers:AIAA-1992-0092[R]. Reston:AIAA, 1992.
[76] STEINBERGER C J. Model free simulations of a high speed reacting mixing layer:AIAA-1992-0257[R]. Reston:AIAA, 1992.
[77] MILLER M F, ISLAND T C, YIP B, et al. An experimental study of the structure of a compressible, reacting mixing layer:AIAA-1993-0354[R]. Reston:AIAA, 1993.
[78] MILLER R S, MADNIA C K, GIVI P. Structure of a turbulent mixing layer[J]. Combustion Science and Technology, 1994, 99(1-3):1-36.
[79] MILLER M F, BOWMAN C T, MUNGAL M G. An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer[J]. Journal of Fluid Mechanics, 1998, 356(1):25-64.
[80] DAY M J, REYNOLDS W C, MANSOUR N N. The structure of the compressible reacting mixing layer:insights from linear stability analysis[J]. Physics of Fluids, 1998, 10(4):993-1007.
[81] LUO K. Combustion effects on turbulence in a par-tially premixed supersonic diffusion flame[J]. Combustion and Flame, 1999, 119(4):417-435.
[82] CALHOON W H, ARUNAJATESAN S, DASH S M. Heat release and compressibility effects on planar shear layer development:AIAA-2003-1273[R]. Reston:AIAA, 2003.
[83] MAHLE I, FOYSI H, SARKAR S, et al. On the turbulence structure in inert and reacting compressible mixing layers[J]. Journal of Fluid Mechanics, 2007, 593(1):171-180.
[84] MATHEW J, MAHLE I, FRIEDRICH R. Effects of compressibility and heat release on entrainment processes in mixing layer[J]. Journal of Turbulence, 2008, 9(1):N14, 1-12.
[85] FERRER P J M, LEHNASCH G AND MURA A. Direct numerical simulations of high speed reactive mixing layers[J]. Journal of Physics:Conference Series, 2012, 395(012004):1-8.
[86] O'BRIEN J, URZAY J, IHME M, et al. Subgrid-scale backscatter in reacting and inert supersonic hydrogen-air turbulent mixing layers[J]. Journal of Fluid Mechanics, 2014, 743(1):554-584.
[87] VREMAN A W, SANDHAM N D, LUO K H. Compressible mixing layer growth rate and turbulence characteristics[J]. Journal of Fluid Mechanics, 1996, 320(1):235-258.
[88] PANTANO C, SARKAR S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation[J]. Journal of Fluid Mechanics, 2002, 451(1):329-371.
[89] BARRE S, BONNET J P. Detailed experimental study of a highly compressible supersonic turbulent plane mixing layer and comparison with most recent DNS results:"Towards an accurate description of compressibility effects in supersonic free shear flows"[J]. International Journal of Heat and Fluid Flow, 2015, 51(1):324-334.
[90] VAGHEFI N S, MADNIA C K. Local flow topology and velocity gradient invariants in compressible turbulent mixing layer[J]. Journal of Fluid Mechanics, 2015, 774(1):67-94.
[91] PIROZZOLI S, BERNARDINI M, MARIE S, et al. Early evolution of the compressible mixing layer issued from two turbulent streams[J]. Journal of Fluid Mechanics, 2015, 777(1):196-218.
[92] OGGIAN T, DRIKAKIS D, YOUNGS D L, et al. Computing multi-mode shock-induced compressible turbulent mixing at late times[J]. Journal of Fluid Mechanics, 2015, 779(1):411-431.
[93] CHOI J Y, MA F H, YANG V. Combustion oscillations in a scramjet engine combustor with transverse fuel injection[J]. Proceedings of the Combustion Institute, 2005, 30(2):2851-2858.
[94] MA F H, LI J, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor:AIAA-2005-3824[R]. Reston:AIAA, 2005.
[95] LI J, MA F H, YANG V, et al. A comprehensive study of combustion oscillations in a hydrocarbon-fueled scramjet engine:AIAA-2007-836[R]. Reston:AIAA, 2007.
[96] LIN K C, JACKSON K, BEHDADNIA R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder[J]. Journal of Propulsion and Power, 2010, 26(6):1161-1169.
[97] WANG Z G, SUN M B, WANG H B, et al. Mixingrelated low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2):2137-2144.
[98] WANG H B, WANG Z G, SUN M B, et al. Nonlinear analysis of combustion oscillations in a cavity-based supersonic combustor[J]. Science China Technological Science, 2013, 56(5):1093-1101.
[99] WANG H B, WANG Z G, SUN M B. Experimental study of oscillations in a scramjet combustor with cavity flameholders[J]. Experimental Thermal and Fluid Science, 2013, 45(1):259-263.
[100] WANG H B, WANG Z G, SUN M B, et al. Large-Eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy, 2013, 38(14):5918-5927.
[101] OUYANG H, LIU W D, SUN M B. The large-amplitude combustion oscillation in a single-side expansion scramjet combustor[J]. Acta Astronautica, 2015, 117(1):90-98.
[102] CHEN Q, WANG B, ZHANG H Q, et al. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers[J]. International Journal of Hydrogen Energy, 2016, 41(4):3171-3184.
[103] BROWN G L, ROSHKO A. Turbulent shear layers and wakes[J]. Journal of Turbulence, 2012, 13(1):N51, 1-32. |