[1] Chen Q, Guo H, Zhang C, et al. Structural optimization of uniaxial symmetry non-circular bolt clearance hole on turbine disk[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1142-1148.
[2] Gao Y, Bai G C, Zhang Y L. Reliability analysis of multiaxial low cycle fatigue life for turbine disk[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1678-1682 (in Chinese). 高阳, 白广忱, 张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报, 2009, 30(9): 1678-1682.
[3] Qian W X, Yin X W, You M Y, et al. Disk low cycle fatigue life prediction based on multiaxial fatigue model[J]. Chinese Mechanical Engineering, 2009, 20(7): 843-846 (in Chinese). 钱文学, 尹晓伟, 由美雁, 等. 基于多轴疲劳模型的轮盘低循环疲劳寿命预测[J]. 中国机械工程, 2009, 20(7): 843-846.
[4] Wang X M, Wang T Y, Zhao Z H. et al. Creep damage behavior for serviced turbine blades and effects of solutioning on blade materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2784-2793 (in Chinese). 王小蒙, 王天佑, 赵子华, 等. 涡轮叶片蠕变损伤行为及固溶处理对叶片材料性能的影响[J]. 航空学报, 2014, 35(10): 2784-2793.
[5] Mu Y W, Lu S. Numerical simulation of fatigue-crack-initation life for turbine disk based on material microcosmic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 282-290 (in Chinese). 牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真[J]. 航空学报, 2013, 34(2):282-290.
[6] Zhang F G, Zhang Y W, Tao Y. Ultrasonic nondestructive testing of p/m nickel base superalloy[J]. Powder Metallurgy Industry, 2004, 14(3): 16-19 (in Chinese). 张凤戈, 张义文, 陶宇. 镍基粉末高温合金的超声无损检测[J]. 粉末冶金工业, 2004, 14(3): 16-19.
[7] Zhang F G, Guo W M, Chen G S, Ultrasonic nondestructive evaluation of inclusions in FGH95 P/M tested disks[J]. Journal of Iron and Streel Research, 2000, 12(4): 51-54 (in Chinese). 张凤戈, 国为民, 陈淦生. FGH95粉末试验盘坯中夹杂物的超声无损评价[J]. 钢铁研究学报, 2000, 12(4): 51-54.
[8] Beiing Institute of Aeronautical Materials. HB/Z34—1998 Ultrasonic inspection of round cakes and plate of wrought superalloy[S]. Beijing: Aviation Industry Press, 1998: 1-2 (in Chinese). 北京航空材料研究院. HB/Z34—1998变形高温合金圆饼及盘件超声波检验[S]. 北京: 航空工业出版社, 1998: 1-2.
[9] Feist W D, Mueller W. Ultrasonic field modelling for complex shaped aerospace components[C]//Proceedings of the 12th World Conference on Non-Destructive Testing, 1989: 1206-1214.
[10] Shi Y W. New progress on non-destructive testing of aeronautical material and components[M]. Beijing: National Defence Industry Press, 2012: 21-63 (in Chinese). 史亦伟. 航空材料与制件无损检测技术新进展[M]. 北京: 国防工业出版社, 2012: 21-63.
[11] Dong D X, Xiong Y, Liu H N, et al. NDT method for the FGH96 and FGH97 superalloy powder disks[J]. Nondestructive Testing, 2012, 34(5): 76-80 (in Chinese). 董德秀, 熊瑛, 刘怀南, 等. FGH96、FGH97粉末盘的无损检测[J]. 无损检测, 2012, 34(5): 76-80.
[12] Feist W D, Mook G, Taylor S, et al. Non-destructive evaluation of manufacturing anomalies in aero-engine rotor disks[C]//16th World Conference on Non-destructive Testing, 2004.
[13] Abdul-Aziz A, Trudell J J, Baaklini G Y. Finite element design study of a bladed, flat rotating disk to simulate cracking in a typical turbine disk[J]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005: 298.
[14] Kryukov I I, Leont'ev S A, Platonov V S, et al. The experience of application of dye penetrant nondestructive testing in diagnostics of gas turbines[J]. Gas Turbine Technologies, 2006, 7: 10-12.
[15] Kryukov I I, Leont'ev S A, Platonov V S, et al. Testing of discs of turbine rotors of gas compressors with the dye penetrant nondestructive testing technique[J]. Russian Journal of Nondestructive Testing, 2008, 44(8): 542-547.
[16] Shmelev N G, Gorbatsevich M I, Kryukov I I, et al. Inspection of rotor disks of HPT and LPT of TK-10-4 gas-compressor units by the ultrasonic flaw detection method[J]. Russian Journal of Nondestructive Testing, 2012, 48(1): 15-22.
[17] Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405.
[18] Dubov A A. Diagnostics of steam turbine disks using the metal magnetic memory method[J]. Thermal Engineering, 2010, 57(1): 16-21.
[19] Medina E A, Blodgett M P, Martin R W, et al. Nondestructive evaluation of dual microstructure turbine engine disk material[J]. AIP Conference Proceedings, 2011, 1335(1): 1144-1151.
[20] Guan X, He J, Rasselkorde E M, et al. Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system[J]. Journal of Nondestructive Evaluation, 2014, 33(1): 51-61.
[21] Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development[J]. Materials China, 2012, 31(12): 12-19 (in Chinese). 杜金辉, 吕旭东, 邓群, 等. GH4169合金研制进展[J]. 中国材料进展, 2012, 31(12): 12-19.
[22] Hu B, Yu R Q, Zou H C. Magnetic non-destructive testing method for thin-plate aluminum alloys[J]. NDT & E International, 2012, 47: 66-69.
[23] Ren J L, Lin J M. Electromagnetic nondestructive testing[M]. Beijing: Science Press, 2008: 223-229 (in Chinese). 任吉林, 林俊明. 电磁无损检测[M]. 北京: 科学出版社, 2008: 223-229. |