[1] Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.
[2] Yi X S. Theory and application of high-performance polymer matrix composites[M]. Beijing: National Defense Industry Press, 2011: 1-20 (in Chinese). 益小苏. 先进树脂基复合材料高性能化理论与实践[M]. 北京: 国防工业出版社, 2011: 1-20.
[3] Banea M D, Da Silva L F M. Adhesively bonded joints in composite materials: an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2009, 223(1): 1-18.
[4] Chaves F J, Da Silva L F M, De Moura M F S F, et al. Fracture mechanics tests in adhesively bonded joints: a literature review[J]. The Journal of Adhesion, 2014, 90(12): 955-992.
[5] Gozluklu B, Uyar I, Coker D. Intersonic delamination in curved thick composite laminates under quasi-static loading[J]. Mechanics of Materials, 2015, 80(Part B): 163-182.
[6] Thawre M M, Pandey K N, Dubey A, et al. Fatigue life of a carbon fiber composite T-joint under a standard fighter aircraft spectrum load sequence[J]. Composite Structures, 2015, 127: 260-266.
[7] Cui H, Li Y L, Liu Y Y, et al. Numerical simulation of composites joints based on cohesive zone model[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 161-168 (in Chinese). 崔浩, 李玉龙, 刘元镛, 等. 基于粘聚区模型的含填充区复合材料接头失效数值模拟[J]. 复合材料学报, 2010, 27(2): 161-168.
[8] Xu W, Chen L, Zhang Q C, et al. The mechanical behavior of interface adhesion and its characterization[J]. Scientia Sinica Technologica, 2012, 42(12): 1361-1376 (in Chinese). 许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征[J]. 中国科学: 技术科学, 2012, 42(12): 1361-1376.
[9] Zhu L, Cui H, Li Y L, et al. Numerical simulation of the failure of composite T-joint with defects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 287-296 (in Chinese). 朱亮, 崔浩, 李玉龙, 等. 含缺陷复合材料T型接头失效数值分析[J]. 航空学报, 2012, 33(2): 287-296.
[10] Shen Z, Zhang Z L, Wang J, et al. Characterization of damage resistance and damage tolarance behavior of composite laminats[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 140-145 (in Chinese). 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5): 140-145.
[11] Hutchinson J W, Suo Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29: 63-191.
[12] Suo Z, Hutchinson J. Interface crack between two elastic layers[J]. International Journal of Fracture, 1990, 43(1): 1-18.
[13] Davies G, Zhang X. Impact damage prediction in carbon composite structures[J]. International Journal of Impact Engineering, 1995, 16(1): 149-170.
[14] Blackman B R K, Hadavinia H, Kinloch A J, et al. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints[J]. International Journal of Fracture, 2003, 119(1): 25-46.
[15] He X C. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264.
[16] Davallo M. Factors affecting fracture behaviour of composite materials[J]. International Journal of ChemTech Research, 2010, 2(4): 2125-2130.
[17] Compston P, Jar P Y B, Davies P. Matrix effect on the static and dynamic interlaminar fracture toughness of glass-fibre marine composites[J]. Composites Part B: Engineering, 1998, 29(4): 505-516.
[18] Tang Y, Ye L, Zhang Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles-A review[J]. Composites Science and Technology, 2013, 86: 26-37.
[19] Cantwell W, Kausch H. Fracture behaviour of epoxy resins[C]//Chemistry and Technology of Epoxy Resins. Berlin: Springer Netherlands, 1993: 144-174.
[20] Frassine R, Pavan A. Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites: I. rate and temperature dependence in unidirectional PEI/carbon-fibre laminates[J]. Composites Science and Technology, 1995, 54(2): 193-200.
[21] Frassine R, Rink M, Pavan A. Viscoelastic effects on the interlaminar fracture behaviour of thermoplastic matrix composites: II. rate and temperature dependence in unidirectional PEEK/carbon-fibre laminates[J]. Composites Science and Technology, 1996, 56(11): 1253-1260.
[22] Kinloch A. Mechanics and mechanisms of fracture of thermosetting epoxy polymers[M]//Dusek K. Epoxy resins and composites I. Berlin: Springer Berlin Heidelberg, 1985: 45-67.
[23] Brunner A, Blackman B R K, Davies P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics, 2008, 75(9): 2779-2794.
[24] Reeder J R, Rews J H. Mixed-mode bending method for delamination testing[J]. AIAA Journal, 1990, 28(7): 1270-1276.
[25] Hojo M, Kageyama K, Tanaka K. Prestandardization study on mode I interlaminar fracture toughness test for CFRP in Japan[J]. Composites, 1995, 26(4): 243-255.
[26] Tanaka K, Kageyama K, Hojo M. Prestandardization study on mode II interlaminar fracture toughness test for cfrp in Japan[J]. Composites, 1995, 26(4): 257-267.
[27] ASTM International. ASTM D 5528 Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-feinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2007.
[28] ASTM International. ASTM D 6671/D6671M-06 Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites[S]. West Conshohocken: ASTM International, 2006.
[29] Sun C, Qian W. The use of finite extension strain energy release rates in fracture of interfacial cracks[J]. International Journal of Solids and Structures, 1997, 34(20): 2595-2609.
[30] Lin S T, Feng Z, Rowlands R E. Thermoelastic determination of stress intensity factors in orthotropic composites using the J-integral[J]. Engineering Fracture Mechanics, 1997, 56(4): 579-592.
[31] Shokrieh M, Heidari R M, Ayatollahi M. Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach [J]. Polymer Testing, 2012, 31(1): 68-75.
[32] Shokrieh M, Heidari R M, Ayatollahi M. Calculation of GI for a multidirectional composite double cantilever beam on two-parametric elastic foundation[J]. Aerospace Science and Technology, 2011, 15(7): 534-543.
[33] Huang Y, Liu C, Stout M. A Brazilian disk for measuring fracture toughness of orthotropic materials [J]. Acta Materialia, 1996, 44(3): 1223-1232.
[34] Liu C, Lovato M, Stout M, et al. Measurement of the fracture toughness of a fiber-reinforced composite using the Brazilian disk geometry[J]. International Journal of Fracture, 1997, 87(3): 241-263.
[35] Mankour A, Bachir B B, Belhouari M. Brazilian disk test simulation intended for the study of interfacial cracks in bi-materials[J]. Computational Materials Science, 2008, 43(4): 696-699.
[36] Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens[J]. Materials Science and Engineering: A, 2008, 478(1): 229-242.
[37] Cognard J Y, Créa?hcadec R, Sohier L, et al. Analysis of the nonlinear behavior of adhesives in bonded assemblies-comparison of TAST and Arcan tests[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 393-404.
[38] Cognard J Y, Sohier L, Davies P. A modified Arcan test to analyze the behavior of composites and their assemblies under out-of-plane loadings[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(1): 111-121.
[39] Greer J M, Jr, Galyon D S E, Hammond M J. Some comments on the Arcan mixed-mode (Ⅰ/Ⅱ) test specimen[J]. Engineering Fracture Mechanics, 2011, 78(9): 2088-2094.
[40] Nikbakht M, Choupani N, Hosseini S R. 2D and 3D interlaminar fracture assessment under mixed-mode loading conditions[J]. Materials Science and Engineering: A, 2009, 516(1-2): 162-168.
[41] Huang Y, Wang W, Liu C, et al. Analysis of intersonic crack growth in unidirectional fiber-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(9): 1893-1916.
[42] Rizov V. Fracture in composites-An overview (Part Ⅰ)[J]. Journal of Theoretical and Applied Mechanics, 2012, 42(2): 3-42.
[43] Rizov V. Fracture in composites-An overview (Part Ⅱ)[J]. Journal of Theoretical and Applied Mechanics, 2012, 42(3): 23-32.
[44] de Morais A B, Rebelo C C, de Castro P, et al. Interlaminar fracture studies in Portugal: past, present and future[J]. Fatigue & Fracture of Engineering Material & Structures, 2004, 27(9): 767-773.
[45] Farmand-Ashtiani E, Cugnoni J, Botsis J. Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite[J]. International Journal of Solids and Structures, 2015, 55: 58-65.
[46] Hashemi S, Kinloch A, Willams J. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites[J]. Journal of Materials Science Letters, 1989, 8(2): 125-129.
[47] Hashmi S, Kinloch A J, Williams J G. The analysis of interlaminar fracture in uniaxial fibre-polymer composites[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1990, 427(1872): 173-199.
[48] Hashemi S, Kinloch A, Williams J. The effects of geometry, rate and temperature on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly (ether-ether ketone) composites[J]. Journal of Composite Materials, 1990, 24(9): 918-956.
[49] de Morais A B. Mode I cohesive zone model for delamination in composite beams[J]. Engineering Fracture Mechanics, 2013, 109: 236-245.
[50] Kusaka T, Hojo M, Mai Y W, et al. Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates[J]. Composites Science and Technology, 1998, 58(3-4): 591-602.
[51] Kurokawa T, Kusaka T, Shimazaki T, et al. Dynamic interlaminar fracture toughness of CFRP composite laminates[M]//Kawata K. Constitutive relation in high/very high strain rates. 1996: 217-224.
[52] Blackman B, Hadavinia H, Kinloch A, et al. The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test[J]. Engineering Fracture Mechanics, 2003, 70(2): 233-248.
[53] Jose S, Ramesh K R, Jana M K, et al. Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates[J]. Composites Science and Technology, 2001, 61(8): 1115-1122.
[54] Srawley J E. Wide rage stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens[J]. International Journal of Fracture, 1976, 12(3): 475-476.
[55] Sun C T, Han C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B: Engineering, 2004, 35(6-8): 647-655.
[56] Davies P, Sims G, Blackman B, et al. Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme[J]. Plastics, Rubber and Composites, 1999, 28(9): 432-437.
[57] Kageyama K, Kimpara I, Suzuli T, et al. Effects of test conditions on mode II interlaminar fracture toughness of four-point ENF specimens[J]. Energy, 1999, 2(2): 1-10.
[58] Davidson B D, Sun X, Vinciquerra A J. Influences of friction, geometric nonlinearities, and fixture compliance on experimentally observed toughnesses from three and four-point bend end-notched flexure tests[J]. Journal of Composite Materials, 2007, 41(10): 1177-1196.
[59] Crews J J H, Reeder J R. A mixed-mode bending apparatus for delamination testing, NASA-TM-100662[R]. Hampton: NASA Langley Research Center, 1988.
[60] Bhashyam S, Davidson B D. Evaluation of data reduction methods[J]. AIAA Journal, 1997, 35(3): 546-552.
[61] Blackman B, Kinloch A, Ro driguez-Sanchez F S, et al. The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading[J]. International Journal of Solids and Structures, 2012, 49(13): 1434-1452.
[62] Szekrényes A, József U J. Comparison of some improved solutions for mixed-mode composite delamination coupons[J]. Composite Structures, 2006, 72(3): 321-329.
[63] Rhee K Y, Chi C H. Determination of fracture toughness, GC of graphite/epoxy composites from a cracked lap shear (CLS) specimen[J]. Journal of Composite Materials, 2001, 35(1): 77-93.
[64] Ramkumar R L, Whitcomb J D. Characterization of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy[M]//John W S. Delamination and debon-ding of materials (A86-20626 07-24). Philadephia: ASTM Press, 1985: 315-335.
[65] Mathieu F, Aimedieu P, Guimard J M, et al. Identification of interlaminar fracture properties of a composite laminate using local full-field kinematic measurements and finite element simulations[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 203-213.
[66] Da Silva L F M, Esteves V H C, Chaves F J P. Fracture toughness of a structural adhesive under mixed mode loadings[J]. Materialwissenschaft and Werkstofftechnik, 2011, 42(5): 460-470.
[67] Nikbakht M, Choupani N. Fracture toughness characterization of carbon-epoxy composite using Arcan specimen[J]. International Journal of Aerospace and Mechanical Engineering, 2008, 2(4): 247-253.
[68] Wang J S, Suo Z. Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches[J]. Acta Metallurgica et Materialia, 1990, 38(7): 1279-1290.
[69] Suo Z. Delamination specimens for orthotropic materials[J]. Journal of Applied Mechanics, 1990, 57(3): 627-634.
[70] Rikards R, Buchholz F G, Wang H, et al. Investigation of mixed mode I/II interlaminar fracture toughness of laminated composites by using a CTS type specimen[J]. Engineering Fracture Mechanics, 1998, 61(3-4): 325-342.
[71] Manshadi B D, Farmand-Ashtiani E, Botsis J, et al. An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen[J]. Composites Part A: Applied Science and Manufacturing, 2014, 61: 43-50.
[72] Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of mode II interlaminar fracture toughness of composite laminates under impact loading[J]. Key Engineering Materials, 1997, 141-143: 477-500.
[73] Kusaka T. Experimental characterization of interlaminar fracture behavior in polymer matrix composites under low-velocity impact loading[J]. JSME International Journal Series A Solid Mechanics and Material Engineering, 2003, 46(3): 328-334.
[74] Blackman B, Dear J, Kinloch A, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1995, 30(23): 5885-5900.
[75] Smiley A, Pipes R. Rate effects on mode I interlaminar fracture toughness in composite materials[J]. Journal of Composite Materials, 1987, 21(7): 670-687.
[76] Guo C, Sun C. Dynamic mode-I crack propagation in a carbon/epoxy composite[J]. Composites Science and Technology, 1998, 58(9): 1405-1410.
[77] Ravi-shandar K, Knauss W G. An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching[J]. International Journal of Fracture, 1984, 26(2): 141-154.
[78] Hug G, Thévenet P, Fitoussi J, et al. Effect of the loading rate on mode I interlaminar fracture toughness of laminated composites[J]. Engineering Fracture Mechanics, 2006, 73(16): 2456-2462.
[79] Daniel I, Yaniv G, Auser J. Rate effects on delamination fracture toughness of graphite/epoxy composites[M]//Marshall I H. Composite Structures 4 Volume 2 Damage Assessment and Material Evaluation. Berlin: Springer Netherlands, 1987: 258-272.
[80] Aliyu A, Daniel I. Effects of strain rate on delamination fracture toughness of graphite/epoxy[M]//John W S. Delamination and Debonding of Materials(A86-20626 07-24). Philadephia: ASTM Press, 1985: 336-348.
[81] Joannic R, Chartier B. A device for utilising the DCB test geometry at intermediate opening velocities[J]. Le Journal de Physique IV France, 2000, 10(9): 249-254.
[82] Pardo S, Baptiste D, Fitoussi J,et al. Strain rate effects on the mode I interlaminar fracture of e glass/polyester composites[J]. Strain, 501: 1561-1566.
[83] Blackman B R K, Kinloch A J, Rodriguez-Sanchez F S, et al. The fracture behaviour of structural adhesives under high rates of testing[J]. Engineering Fracture Mechanics, 2009, 76(18): 2868-2889.
[84] Colin de Verdiere M, Skordos A A, May M, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non crimp fabric composites: mode I[J]. Engineering Fracture Mechanics, 2012, 96: 11-25.
[85] Thouless M D, Adams J L, Kafkalidis M S, et al. Determining the toughness of plastically deforming joints[J]. Journal of Materials Science, 1998, 33(1): 189-197.
[86] Sun C, Thouless M D, Waas A M, et al. Ductile-brittle transitions in the fracture of plastically-deforming, adhesively-bonded structures. Part I: experimental studies[J]. International Journal of Solids and Structures, 2008, 45(10): 3059-3073.
[87] Brown S W. Time and temperature-dependence of fracture energies attributed to copper/epoxy bonds [D]. Virginia: Virginia Polytechnic Institute and State University, 2004.
[88] Xu S Y, Dillard D A. Determining the impact resistance of electrically conductive adhesives using a falling wedge test[J]. IEEE Transactions on Component and Packaging Technologies, 2003, 26(3): 554-562.
[89] Simo J C. Response and failure of adhesively bonded automotive composite structures under impact loads [D]. Virginia: Virginia Polytechnic Institute and State University, 2004.
[90] Karac A, Blackman B R K, Cooper V, et al. Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate[J]. Engineering Fracture Mechanics, 2011, 78(6): 973-989.
[91] Syn C J. Dynamic delamination in a glass fiber composite and interfacial fracture in a bi-material[D]. West Lafayette: Purdue University, 2008.
[92] Wu X F, Dzenis Y A. Determination of dynamic delamination toughness of a graphite-fiber/epoxy composite using Hopkinson pressure bar[J]. Polymer Composites, 2005, 26(2): 165-180.
[93] Olsson R, Thesken J C, Brandt F, et al. Investigations of delamination criticality and the transferability of growth criteria[J]. Composite Structures, 1996, 36(3-4): 221-247.
[94] Sohn M S, Hu X Z. Comparative study of dynamic and static delamination behaviour of carbon fibre/epoxy composite laminates[J]. Composites, 1995, 26(12): 849-858.
[95] Sohn M S, Hu X Z. Impact and high strain rate delamination characteristics of carbon fibre epoxy composites[J]. Theoretical and Applied Fracture Mechanics, 1996, 25(1): 17-29.
[96] Liu C, Rosakis A J, Stout M G. Dynamic fracture toughness of a unidirectional graphite/epoxy composite[C]//Proceedings of the Symposium on "Dynamic Effects in Composite Structures". New York: ASME Press, 2001: 1-12.
[97] Blackman B, Kinloch A, Wang Y, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1996, 31(17): 4451-4466.
[98] Todo M, Nakamura T, Takashi K. Mode II interlaminar fracture behavior of fiber reinforced polyamide composites under static and dynamic loading conditions[J]. Journal of Reinforced Plastics and Composites, 1999, 18(15): 1415-1427.
[99] Todo M, Nakamura T, Mada T, et al. Measurement of dynamic interlaminar fracture toughness of FRP laminates using dynamic displacement measuring apparatus[J]. Advanced Composite Materials, 1998, 7(3): 285-297.
[100] Todo M, Nakamura T, Takahashi K. Effects of moisture absorption on the dynamic interlaminar fracture toughness of carbon/epoxy composites[J]. Journal of Composite Materials, 2000, 34(8): 630-648.
[101] Colin D V M, Skordos A A, Walton A C, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/mode II[J]. Engineering Fracture Mechanics, 2012, 96: 1-10.
[102] Guo W G, Li Y L, Suo T. Stress wave: an introduction [M]. Xi'an: Northwestern Polytechnical University Press, 2007: 126-146 (in Chinese). 郭伟国, 李玉龙, 索涛. 应力波简明基础教程[M]. 西安: 西北工业大学出版社, 2007: 126-146.
[103] Lu W Y, Song B, Jin H. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques[C]//Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics. New York: Springer New York, 2011: 277-279.
[104] Lu W Y, Song B, Jin H. Dynamic mode-II characterization of a woven glass composite[M]//Proulx T. Dynamic behavior of materials. New York: Springer New York, 2011: 455-457.
[105] Song B, Jin H, Lu W Y. Stress wave propagation in a composite beam subjected to transverse impact[C]//Proceedings of IMPLAST. Bethel: Society for Experimental Mechanics, Inc., 2010: 1-3.
[106] Adachi T, Arai M, Sakabe N, et al. Evaluation of dynamic fracture toughness of unidirectional CFRP laminates[J]. JSME International Journal Series A Solid Mechanics and Material, 2000, 43(2): 179-185.
[107] Kusaka T, Yamauchi Y, Kurokawa T. Effects of strain rate on mode II interlaminar fracture toughness in carbon-fibre/epoxy laminated composites[J]. Journal of Physics IV France, 1994, 4(8): 671-676.
[108] Lu W Y, Song B, Gwinn K. Dynamic fracture toughness test using Hopkinson bar[M]//Chalivendra V. Dynamic behavior of materials. New York: Springer New York, 2013: 499-502.
[109] Wiegand J, Hornig A, Gerlach R, et al. An experimental method for dynamic delamination analysis of composite materials by impact bending[J]. Mechanics of Advanced Materials and Structures, 2015, 22(5): 413-421.
[110] Lambros J, Rosakis A J. Dynamic crack initiation and growth in thick unidirectional graphite/epoxy plates[J]. Composites Science and Technology, 1997, 57(1): 55-65.
[111] Caimmi F, Frassine R, Pavan A. A new jig for mode II interlaminar fracture testing of composite materials under quasi-static and moderately high rates of loading[J]. Engineering Fracture Mechanics, 2006, 73(16): 2277-2291.
[112] Guimard J M, Allix O, Pechnik N, et al. Characterization and modeling of rate effects in the dynamic propagation of mode-II delamination in composite laminates[J]. International Journal of Fracture, 2009, 160(1): 55-71.
[113] Govender R, Langdon G S, Nurick G N, et al. Impact delamination testing of fibre reinforced polymers using Hopkinson pressure bars[J]. Engineering Fracture Mechanics, 2013, 101: 80-90.
[114] Tsai J L, Guo C, Sun C T. Dynamic delamination fracture toughness in unidirectional polymeric composites[J]. Composites Science and Technology, 2001, 61(1): 87-94.
[115] Becker T, Mostafavi M, Tait R, et al. An approach to calculate the J-integral by digital image correlation displacement field measurement[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(10): 971-984.
[116] Upadhyaya P, Singh S, Roy S. A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites[J]. Composites Science and Technology, 2011, 71(10): 1309-1315.
[117] Anthony J, Paris P C. Instantaneous evaluation of J and C[J]. International Journal of Fracture, 1988, 38(1): 19-21.
[118] Gunderson J D, Brueck J F, Paris A J. Alternative test method for interlaminar fracture toughness of composites[J]. International Journal of Fracture, 2007, 143(3): 273-276.
[119] Xavier J, Oliveira M, Monteiro P, et al. Direct evaluation of cohesive law in mode I of Pinus pinaster by digital image correlation[J]. Experimental Mechanics, 2014, 54(5): 829-840.
[120] Dias G F, de Moura M F S F, Chousal J A G, et al. Cohesive laws of composite bonded joints under mode I loading[J]. Composite Structures, 2013, 106: 646-652.
[121] Pereira F A M, Morais J J L, Dourado N, et al. Fracture characterization of bone under mode II loading using the end loaded split test[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8): 1764-1773.
[122] Dubois F, Méité M, Pop O, et al. Characterization of timber fracture using the digital image correlation technique and finite element method[J]. Engineering Fracture Mechanics, 2012, 96: 107-121.
[123] Méité M, Dubois F, Pop O, et al. Mixed mode fracture properties characterization for wood by Digital Images Correlation and Finite Element Method coupling[J]. Engineering Fracture Mechanics, 2013, 105: 86-100.
[124] Lee D, Tippur H, Kirugulige M, et al. Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography[J]. Journal of Composite Materials, 2009, 43(19): 2081-2108.
[125] Lee D, Tippur H, Bogert P. Quasi-static and dynamic fracture of graphite/epoxy composites: an optical study of loading-rate effects[J]. Composites Part B: Engineering, 2010, 41(6): 462-474.
[126] Blaysat B, Hoefnagels J P M, Lubineau G, et al. Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics[J]. International Journal of Solids and Structures, 2015, 55: 79-91.
[127] Xu W, Yao X F, Liu D L. The application of coherent gradient sensing interference measurement in static fracture mechanics experiments[J]. Optical Technique, 2006, 32(2): 225-233 (in Chinese). 许蔚, 姚学锋, 刘栋梁. 相干梯度敏感干涉测量技术及在静态断裂力学实验中的应用[J]. 光学技术, 2006, 32(2): 225-233.
[128] Liu C, Rosakis A, Ellis R W, et al. A study of the fracture behavior of unindirectional fiber-reinforced composite using Coherent Gradient Sensing (CGS) interferometry[J]. International Journal of Fracture, 1998, 90(4): 355-382.
[129] Gillespie J W, Jr, Carlsson L A, Pipes R B, et al. Delamination growth in composite materials, NASA-CR-178066[R]. Washington, D.C.: NASA, 1986.
[130] Gillespie J W, Jr, Carlsson L A, Smiley A J. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/peek[J]. Composites Science and Technology, 1987, 28(1): 1-15.
[131] You H, Yum Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 1997, 16(6): 537-549.
[132] Mall S, Law G E, Katouzian M. Loading rate effect on interlaminar fracture toughness of a thermoplastic composite[J]. Journal of Composite Materials, 1987, 21(6): 569-579.
[133] Fracasso R, Rink M, Pavan A, et al. Rate and temperature effects on interlaminar fracture toughness in interleaved PEEK/CF composites[C]//Proceedings of the ECCM-8: European Conference on Composite Materials: Science, Technologies and Applications. Cambridge: Woodhead Publishing Ltd., 1998: 463-470.
[134] Sun C, Thouless M D, Waas A M, et al. Ductile-brittle transitions in the fracture of plastically deforming, adhesively bonded structures. Part II: numerical studies[J]. International Journal of Solids and Structures, 2008, 45(17): 4725-4738.
[135] Sun C, Thouless M D, Waas A M, et al. Rate effects in mode-II fracture of plastically deforming, adhesively bonded structures [J]. Internal Jounal of Fracture, 2009, 156(2): 111-128.
[136] Carlberger T, Biel A, Stigh U. Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive[J]. International Journal of Fracture, 2009, 155(2): 155-166.
[137] May M, Hesebeck O, Marzi S, et al. Rate dependent behavior of crash-optimized adhesives-experimental characterization, model development, and simulation[J]. Engineering Fracture Mechanics, 2015, 133: 112-137.
[138] Smiley A J, Pipes R B. Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials[J]. Composites Science and Technology, 1987, 29(1): 1-15.
[139] Kageyama K, Kimpara I. Delamination failures in polymer composites[J]. Materials Science and Engineering: A, 1991, 143(1-2): 167-174.
[140] Kusaka T, Hojo M, Ochiai S, et al. Rate-dependent mode II interlaminar fracture behavior of carbon-fiber/epoxy composite laminates[J]. Materials Science Research International, 1999, 5(2): 98-103.
[141] Berger L, Cantwell W J. Temperature and loading rate effects in the mode II interlaminar fracture behavior of carbon fiber reinforced PEEK[J]. Polymer Composites, 2001, 22(2): 271-281.
[142] Cantwell W. The influence of loading rate on the mode II interlaminar fracture toughness of composite materials[J]. Journal of Composite Materials, 1997, 31(14): 1364-1380.
[143] Maikuma H, Gillespie J W, Jr, Whitney J M. Analysis and experimental characterization of the center notch flexural test specimen for mode II interlaminar fracture[J]. Journal of Composite Materials, 1989, 23(8): 756-786.
[144] Blackman B R K, Dear J P, Kinloch A J, et al. The failure of fibre composites and adhesively bonded fibre composites under high rates of test[J]. Journal of Materials Science, 1996, 31(17): 4467-4477.
[145] Compston P, Jar P Y B, Burchill P J, et al. The effect of matrix toughness and loading rate on the mode-II interlaminar fracture toughness of glass-fibre/vinyl-ester composites[J]. Composites Science and Technology, 2001, 61(2): 321-333.
[146] Jiang W, Tsang F F Y, Tjons S C, et al. Loading rate dependence of mode II fracture behavior in interleaved carbon fibre/epoxy composite laminates[J]. Applied Composite Materials, 2001, 8(6): 361-369.
[147] Wade G A, Cantwell W J. Temperature and loading rate effects on the fracture behaviour of adhesively bonded GFRP Nylon-6, 6[J]. The Journal of Adhesion, 2001, 76(3): 245-264.
[148] Banea M D, de Sousa F, Da Silva L, et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474. |