[1] JR ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: AIAA, 2006.
[2] CHASE R L, TANG M H. A history of the NASP program from the formation of the joint program office to the termination of the HySTP scramjet performance demonstration program[C]//AIAA 6th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1995.
[3] RICKETTS R H, NOLL T E, JR WHITLOW W, et al. An overview of aeroelasticity studies for the national aero-space plane (NASP)[C]//AIAA/ASME/ASCE/AHS/ASC Structures. Reston: AIAA, 1993: 152-162.
[4] MCCLINTON C R. X-43-scramjet power breaks the hypersonic barrier: Dryden lectureship in research for 2006[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
[5] NEUENHAHN T, OLIVIER H. Development of the HyShot stabiltiy demonstrator[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2006.
[6] MANSOUR N N, PITTMAN J L, OLSON L E. Fundamental aeronautics hypersonics project: Overview[C]//39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
[7] WALKER S H, RODGERS F. Falcon hypersonic technology overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
[8] KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney—Overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
[9] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[10] DOLVIN D J. Hypersonic international flight research and experimentation (HIFiRE) fundamental sciences and technology development strategy[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[11] WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X-A reusable hypersonic test bed[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[12] OUZTS P J. The joint technology office on hypersonics[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[13] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11): 1052-1059.
[14] MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aero-thermoelastic analysis of hypersonic vehicles: Current status and future trends[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
[15] WITEOF Z D, NEERGAARD L J, VANDERWYST A S, et al. Dynamic fluid-thermal- structural interaction effects in preliminary design of high speed vehicles[C]//15th Dynamics Specialists Conference. Reston: AIAA, 2016.
[16] THORNTON E A, PAUL D B. Thermal-structural analysis of large space structures—An assessment of recent advances[J]. Journal of Spacecraft and Rockets, 1985, 22(4): 385-393.
[17] HASSAN B, KUNTZ D W, POTTER D L. Coupled fluid/thermal prediction of ablating hypersonic vehicles[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
[18] FARHAT C, LESOINNE M. Higher-order staggered and subiteration free algorithms for coupled dynamic aeroelasticity problems[C]//36th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
[19] DECHAUMPHAI P, WIETING A R, PANDEY A K. Fluid-thermal-structural interaction of aerodynamically heated leading edges[C]//30th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1989.
[20] CULLER A J, MCNAMARA J J. Studies on fluid-thermal-structural coupling for aerothermalelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8): 1721-1738.
[21] ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10): 34-43, 64.
[22] MCNAMARAJ J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122.
[23] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5): 1047-1051. GUI Y W, LIU L, GENG X R, et al. Study on the computation strategy and method of aero-dynamic-thermal- structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5): 1047-1051 (in Chinese).
[24] MICHOPOULOS J G, FARHAT C, FISH J. Modeling and simulation of multiphysics systems[J]. Journal of Computing and Information Science in Engineering, 2005, 5(3): 198-213.
[25] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014. LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2014 (in Chinese).
[26] ASHLEY H, ZARTARIAN G. Piston theory: A new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences, 1956, 23(12): 1109-1118.
[27] 黄志澄. 高超声速飞行器空气动力学[M]. 北京: 国防工业出版社, 1995. HUANG Z C. Hypersonic aircraft aerodynamics[M]. Beijing: National Defence Industry Press, 1995 (in Chinese).
[28] LUCIA D J, BERAN P S, SILVA W A. Reduced order modeling: New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117.
[29] TRIZILA P, KANG C K, VISBAL M, et al. A surrogate model approach in 2-D versus 3-D flapping wing aerodynamic analysis[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
[30] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10): 2418-2429.
[31] SILVA W A. Identification of nonlinear aeroelastic systems based on the Volterra theory: Progress and opportunities[J]. Nonlinear Dynamics, 2005, 39(1): 25-62.
[32] GNOFFO P A. Application of program LAURA to three-dimensional AOTV flowfields[C]//AIAA 24th Aerospace Sciences Meeting. Reston: AIAA, 1986.
[33] HENDRICKS R C, BARON A, PELLER I, et al. GASP—A computer code for calculating the thermodynamic and transport properties for eight fluids-helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide: NASA-TM-X-67895[R]. Washington, D.C.: NASA, 1971.
[34] 潘永祥, 李慎. 自然科学发展史纲要[M]. 北京: 首都师范大学出版社, 1996. PANY Y X, LI S. The history of natural science[M]. Beijing: Capital Normal University Press, 1996(in Chinese).
[35] 杨世铭, 陶文铨. 传热学[M]. 三版. 北京: 高等教育出版社, 1998. YANG S M, TAO W Q. Heat transfer theory[M]. 3rd ed. Beijing: Higher Education Press, 1998(in Chinese).
[36] 竹内洋一郎. 热应力[M]. 北京: 科学出版社, 1977. AKEUCHI H. Thermal stress[M]. Beijing: Science Press, 1977(in Chinese).
[37] WIETING A R, GUY R W. Thermal-structural design/analysis of an airframe-integrated hydrogen-cooled scramjet[J]. Journal of Aircraft, 1976, 13(3): 192-197.
[38] FALLEN D J, THORNTON E A. Integrated thermal-structural approach for shells of revolution[J]. AIAA Journal, 1983, 21(10): 1475-1477.
[39] CHEN Y K, HENLINE W D. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip[C]//AIAA 28th Thermophysics Conference. Reston: AIAA, 1993.
[40] CHEN Y K, MILOS F S. Solution strategy for thermal response of nonablating thermal protection systems at hypersonic speeds[C]//AIAA 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
[41] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度场的影响研究[J]. 空气动力学学报, 2015, 33(1): 31-35. LIU L, GUI Y W, GENG X R, et al. Study on the temperature field of hypersonic vehicle structure with aerothermoelasticity deformation[J]. Acta Aerodynamica Sinica, 2015, 33(1): 31-35 (in Chinese).
[42] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
[43] WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565.
[44] 黄唐, 毛国良, 姜贵庆, 等. 二维流场、热、结构一体化数值模拟[J]. 空气动力学学报, 2000, 18(1): 115-119. HUANG T, MAO G L, JIANG G Q, et al. Two dimensional coupled flow-thermal-structural numerical simulation[J]. Acta Aerodynamica Sinica, 2000, 18(1): 115-119 (in Chinese).
[45] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1): 35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1): 35-39 (in Chinese).
[46] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4): 422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427 (in Chinese).
[47] 赵晓利, 孙振旭, 安亦然, 等. 高超声速气动热的耦合计算方法研究[J]. 科学技术与工程, 2010, 10(22): 5450-5455. ZHAO X L, SUN Z X, AN Y R, et al. Coupled Flow-thermal analysis approach for hypersonic aerodynamic heating[J]. Science Technology and Engineering, 2010, 10(22): 5450-5455 (in Chinese).
[48] WONG C C, BLOTTNER F G, PAYNE J L. Implementation of a parallel algorithm for thermo-chemical nonequilibrium flow simulations[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
[49] GARTLING D K, HOGAN R E. COYOTE Ⅱ: A finite element computer program for nonlinear heat conduction problems. Part Ⅰ: Theoretical background: SAND-94-1773[R]. Albuquerque (NM): Sandia National Labs, 1994.
[50] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报,2015, 36(1): 311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese).
[51] FARHAT C, VAN DER ZEE K G, GEUZAINE P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 1973-2001.
[52] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11. YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese).
[53] CUNNINGHAM H J. Panel-flutter analysis of a thermal protection-shield concept for the space shuttle[J]. AIAA Journal, 1972, 10(8): 1101-1103.
[54] EVENSEN D A, APRAHAMIAN R, OVEROYE K R. Pulsed differential holographic measurements of vibration modes of high temperature panels: NASA-CR-2028[R]. Washington, D.C.: NASA, 1972.
[55] JR CARSON YATES E, BENNETT R M. Analysis of supersonic-hypersonic flutter of lifting surfaces at angle of attack[J]. Journal of Aircraft, 1972, 9(7): 481-489.
[56] BENDIKSEN O O. A new approach to computational aeroelasticity: AIAA-1991-0939[R]. Reston: AIAA, 1991.
[57] HUGHES T J R, HULBERT G M. Space-time finite element methods for elastodynamics: Formulations and error estimates[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(3): 339-363.
[58] TEZDUYAR T E, BEHR M. A new strategy for finite element computations involving moving boundaries and interfaces: The deforming-spatial-domain/space-time procedure: Ⅰ. The concept and the preliminary numerical tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.
[59] MASUD A, HUGHES T J R. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 146(1-2): 91-126.
[60] DONEA J, GUILIANI S, HALLEUX J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1-3): 689-723.
[61] FARHAT C, LESOINNE M, MAMAN N. Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10): 807-835.
[62] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8): 1381-1388.
[63] BARTELS R E. Mesh strategies for accurate computation of unsteady spoiler and aeroelastic problems[J]. Journal of Aircraft, 2000, 37(3): 521-525.
[64] STEPHENS C H, JR ARENA A S, GUPTA K K. Application of the transpiration method for aeroservoelastic prediction using CFD: AIAA-1998-2071[R]. Reston: AIAA, 1998.
[65] FARHAT C, LIN T Y. Transient aeroelastic computations using multiple moving frames of reference[C]//8th AIAA Applied Aerodynamics Conference. Reston: AIAA, 1990.
[66] HARTWICH P M, AGRAWAL S. Method for perturbing multiblock patched grids in aeroelastic and design optimization applications[C]//13th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1997.
[67] STEIN K, BENNEY R, KALRO V. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 373-386.
[68] CHEN P C, JADIC I. Interfacing of fluid and structural models via innovative structural boundary element method[J]. AIAA Journal, 1998, 36(2): 282-287.
[69] 徐敏, 陈士橹. CFD/CSD耦合计算研究[J]. 应用力学学报, 2004, 21(2): 33-36. XU M, CHEN S L. Study of date exchange method for coupling computational CFD/CSD[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 33-36(in Chinese).
[70] 徐敏, 史忠军, 陈士橹. 一种流体-结构耦合计算问题的网格数据交换方法[J]. 西北工业大学学报, 2003, 21(5): 532-535. XU M, SHI Z J, CHEN S L. A suitable method for transferring information between CFD and CSD grids[J]. Journal of Northwestern Polytechnical University, 2003, 21(5): 532-535 (in Chinese).
[71] 崔鹏, 韩景龙. 一种局部形式的流固耦合界面插值方法[J]. 振动与冲击, 2009, 28(10): 64-67. CUI P, HAN J L. Interface interpolation method in local form for fluid-structure interaction problems[J]. Journal of Vibration and Shock, 2009, 28(10): 64-67 (in Chinese).
[72] 安伟刚, 梁生云, 陈殿宇. 一种局部动态数据交换方法在流固耦合分析中的应用[J]. 航空学报, 2013, 34(3): 541-546. AN W G, LIANG S Y, CHEN D Y. Local dynamic data exchange in fluid structure interaction analysis[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 541-546(in Chinese).
[73] SHEPARD D. A two-dimensional interpolation function for computer mapping of irregularly spaced data: TR-15-AD-668 707[R]. Cambridge: Harvard University, 1968.
[74] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191.
[75] BUHMANN M D. Radial basis functions: Theory and implementations[M]. Cambridge, UK: Cambridge University Press, 2004.
[76] SMITH M J, HODGES D H. Evaluation of computational algorithms suitable for fluid-structure interactions[J]. Journal of Aircraft, 2000, 37(2): 282-294.
[77] DE BOERA, BIJL H, VAN ZUIJLEN A. Comparing different methods for the coupling of non-matching meshes in fluid-structure interaction computations[C]//17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
[78] RENDALL T C S, ALLEN C B. An efficient fluid-structure interpolation and mesh motion scheme for large aeroelastic simulations[C]//26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
[79] JAIMAN R K, JIAO X, GEUBELLE P H, et al. Assessment of conservative load transfer for fluid-solid interface with non-matching meshes[J]. International Journal for Numerical Methods in Engineering, 2005, 64(15): 2014-2038.
[80] RENDALL T C S, ALLEN C B. Improved radial basis function fluid-structure coupling via efficient localized implementation[J]. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1188-1208.
[81] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12): 2668-2681. CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2668-2681 (in Chinese).
[82] STRGANAC T W, MOOK D T. Numerical model of unsteady subsonic aeroelastic behavior[J]. AIAA Journal, 1990, 28(5): 903-909.
[83] MORTON S A, MELVILLE R B, VISBAL M R. Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes[J]. Journal of Aircraft, 1998, 35(5): 798-805.
[84] GORDNIER R E, MELVILLE R B. Transonic flutter simulations using an implicit aeroelastic solver[J]. Journal of Aircraft, 2000, 37(5): 872-879.
[85] GAO X W, CHEN P C, TANG L. Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method[J]. AIAA Journal, 2001, 40(8): 1512-1517.
[86] MENKES E G, HOUBOLT J C. Evaluation of aerothermoelasticity problems for unmanned Mars-entry vehicles[J]. Journal of Spacecraft and Rockets, 1969, 6(2): 178-184.
[87] ERICSSON L E, ALMROTH B O, BAILIE J A. Hypersonic aerothennoelastic characteristics of a finned missile[J]. Journal of Spacecraft and Rockets, 1979, 16(3): 187-192.
[88] JR DOGGETT R V, RICKETTS R H, NOLL T E, et al. NASP aeroservothermoelasticity studies: NASA-TM-104058[R]. Washington, D.C.: NASA, 1991.
[89] 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006, 23(2): 41-46. ZHANG W W, XIA W, YE Z Y. A numerical method for hypersonic aerothermoelasticity[J]. Engineering Mechanics, 2006, 23(2): 41-46(in Chinese).
[90] CULLER A J, CROWELL A R, MCNAMARA J J. Studies on fluid-structural coupling for aerothermoelasticity in hypersonic flow[C]//50th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
[91] POURTAKDOUST S H, FAZELZADEH S A. Nonlinear aerothermoelastic behavior of skin panel with wall shear stress effect[J]. Journal of Thermal Stresses, 2005, 28(2): 147-169.
[92] ABBAS J F, IBRAHIM R A, GIBSON R F. Nonlinear flutter of orthotropic composite panel under aerodynamic heating[J]. AIAA Journal, 1993, 31(8): 1478-1488.
[93] SCHAEFFER H G, JR HEARD W L. Flutter of a simply supported panel subjected to a nonlinear temperature distribution and supersonic flow[C]//AIAA 2nd Aerospace Sciences Meeting. Reston: AIAA, 1965.
[94] CULLER A J, MCNAMARA J J. Fluid-thermal-structural modeling and analysis of hypersonic structures under combined loading[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
[95] GEE D J, SIPCIC S R. Coupled thermal model for nonlinear panel flutter[J]. AIAA Journal, 1999, 37(5): 642-650.
[96] MEI C, ABDEI-MOTAGALY K, CHEN R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J]. Applied Mechanics Reviews, 1999, 52(10): 321-332.
[97] MCNAMARA J J, CROWELL A R, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945.
[98] CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406.
[99] MEI C, GRAY C E. A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds[C]//30th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1989.
[100] NYDICK I, FRIEDMANNAT P P, ZHONG X L. Hypersonic panel flutter studies on cruved panel: AIAA-1995-3011[R]. Reston: AIAA, 1995.
[101] SELVAM R P, QU Z Q, ZHENG Q. Three-dimensional nonlinear panel flutter at supersonic Euler flow[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
[102] GUPTA K K, VOELKER L S, BACH C, et al. CFD-based aeroelastic analysis of the X-43 hypersonic flight vehicle[C]//39th Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2001.
[103] THAREJA R R, STEWART J R, HASSAN O, et al. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations[C]//AIAA 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
[104] DECHAUMPHAI P. Evaluation of an adaptive unstructured remeshing technique for integrated fluid-thermal-structural analysis[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(4): 599-606.
[105] LOHNER R, YANG C, CEBRAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[C]//29th AIAA Fluid Dynamics Conference. Reston: AIAA, 1998.
[106] KONTINOS D. Coupled thermal analysis method with application to metallic thermal protection panels[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(2): 173-181.
[107] KONTINOS D A, PALMER G. Numerical simulation of metallic thermal protection system panel bowing[J]. Journal of Spacecraft and Rockets, 1999, 36(6): 842-849.
[108] TRAN H, FARHAT C. An integrated platform for the simulation of fluid-structure-thermal interaction problems[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
[109] HAUPT M C, NIESNER R, UNGER R, et al. Computational aero-structural coupling for hypersonic applications[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2006.
[110] MILLER B A, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
[111] MILLER B A, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
[112] MILLER B A, MCNAMARA J J. Efficient time-marching of fluid-thermal-structural interactions[C]//55th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014.
[113] LEVETT M A, LIANG Z X, MILLER B A, et al. Investigation into parallel time marching of fluid-thermal-structural interactions[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
[114] 张昊元. 高超声速飞行器前缘缝隙流动气动热环境数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012. ZHANG H Y. Numerical investigation for aerodynamic heating environment on leading-edge gap of hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2012 (in Chinese).
[115] LANEY C B. Computational gas dynamics[M]. Cambridge: Cambridge University Press, 1998.
[116] SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for Euler equations[C]//31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
[117] YOON S, KWAK D, CHANG L. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term[C]//9th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1989.
[118] INCROPERA F P, DEWITT D P, DERGMAN T L, et al. Fundamentals of heat and mass transfer[M]. 6th ed. New York: John Wiley & Sons, Inc., 2007.
[119] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. TAO W Q. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2001(in Chinese).
[120] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. WANG X C. The finite element method[M]. Beijing: Tsinghua University Press, 2003 (in Chinese).
[121] GALBRAITH M C, MILLER J H. Development and application of a general interpolation algorithm[C]//24th Applied Aerodynamics Conference. Reston: AIAA, 2006.
[122] BATHE K J, ZHANG H, JI S H. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers and Structures, 1999, 72(1-3): 1-16.
[123] GOURAG S L, BADCOCK K J WOODGATE M A, et al. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal, 2001, 105(1046): 215-221. |