[1] Fry R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58.[2] Holcomb F H, Sohn C W, Tamm G, et al. Ramgen power systems for military engine applications, ADA478293[R]. 2007.[3] Lawlor S P. Apparatus and method for fuel-air mixing before supply of low pressure lean premix to combustor for rotating ramjet engine driving a shaft: U.S. 6263660 [P]. 2001-07-24.[4] Lawlor S P, Kushnick S B. Compact rotary ramjet engine with rapidly interchangeable cartridge containing hot section rotating elements:U.S. 20030014961[P]. 2001-07-23.[5] Lawlor S P. Method and apparatus for power generation using rotating ramjets: U.S. 6347507[P]. 2002-02-19.[6] Lawlor S P. Ramjet engine for power generation: U.S. 6446425[P]. 2002-09-10.[7] Koopman A. Ramgen rotor cartridge for the pre-prototype ramgen engine, FC26-00NT40915[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2003.[8] Sohn C W, Holcomb F H, Baldwin P, et al. Ramgen power systems-supersonic component tenchnology for military engine applications, ADA482178[R]. Bellevue, WA: Ramgen Power Systems, Inc., 2006.[9] Picard M, Rancourt D, Plante J S, et al. Rim-rotor rotary ramjet engine, Part 2: quasi-one-dimensional aerothermodynamic design[J]. Journal of Propulsion and Power, 2012, 28(6): 1304-1314.[10] Rancourt D, Picard M, Denninger M, et al. Rim-rotor rotary ramjet engine, Part 1: structural design and experimental validation[J]. Journal of Propulsion and Power, 2012, 28(6): 1293-1303.[11] Lewis G D, Smith C E. Investagation of centrifugal force and Reynolds number effects on combustion processes,ADA013912[R]. 1975.[12] Yatsufusa T, Chang X, Taki S. Experiments on flame holding position of the fin-less projectile in ram accelerator, AIAA-2001-1765[R]. Reston: AIAA, 2001.[13] Lapsa A P, Dahm W J. Hyperacceleration effects on turbulent combustion in premixed step-stabilized flames[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1731-1738.[14] Dahm W J, Lapsa A P, Hamlington P E. Inside-out rotary ramjet turbogenerator[C]//Proceedings of the International Energy Conversion Engineering Conference, 2006: 1221-1235.[15] Guo X H. Investigation of spary combustion characteristic in conditions of high centrifugal acceleration[D]. Beijing: Beihang University, 2010 (in Chinese). 郭新华. 高离心加速度条件下液雾燃烧基础研究[D]. 北京: 北京航空航天大学, 2010.[16] Wang Z Q. Effect of the centrifugal force on flame stabilization in the curved combustor[D]. Beijing: Beihang University, 2007 (in Chinese). 汪志强. 弯曲燃烧室强离心力条件下的火焰稳定研究[D]. 北京: 北京航空航天大学, 2007.[17] An S, Lin Y Z, Zhang C, et al. Characterization of flame stabilization for V-gutter in centrifugal force field[J]. Journal of Aerospace Power, 2009, 24(5): 1011-1015 (in Chinese). 安帅, 林宇震, 张弛, 等. 离心力场下V型火焰稳定器火焰稳定性的研究[J]. 航空动力学报, 2009, 24(5): 1011-1015.[18] Li L, Lin Y Z, Guo X H, et al. Characteristics of lean blowout limit for backward step-stabilized flame with centrifugal force effect[J]. Journal of Aerospace Power, 2011, 26(4): 822-828 (in Chinese). 李林, 林宇震, 郭新华, 等. 离心条件下后台阶贫油熄火特性[J]. 航空动力学报, 2011, 26(4): 822-828.[19] Guo X H, Lin Y Z, Huang Y, et al. Cirterion number determination for rotating combustion[C]//Chinese Society of Aeronatics and Astronautics 14th Combustion and Heat and Mass Transfer Symposium, 2007: 444-451. 郭新华, 林宇震, 黄勇, 等. 旋转燃烧准则数的确定[C]//中国航空学会第十四届燃烧与传热传质学术交流会, 2007: 444-451.[20] Lefebvre A H, Ballal D R. Gas turbine combustion: alternative fuels and emissions[M]. Hoboken: CRC Press, 2010.[21] Lin Y Z, Li L, Zhang C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57 (in Chinese). 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014, 35(1): 46-57.[22] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on atomization of liquid jets in transverse airflow[J]. AIAA Journal, 1997, 38(1): 64-72.[23] Fuller R P, Wu P K, Kirkendall K A, et al. Effects of injection angle on the breakup processes of liquid jets in subsonic crossflows[C]//33rd Joint Propulsion Conference and Exhibit, 1997. |