1 |
MARSH A W, WANG G T, HEYBORNE J D, et al. Time-resolved size, velocity, and temperature statistics of aluminum combustion in solid rocket propellants[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4417-4424.
|
2 |
CHEN Y, GUILDENBECHER D R, HOFFMEISTER K N G, et al. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry[J]. Combustion and Flame, 2017, 182: 225-237.
|
3 |
GOROSHIN S, HIGGINS A, KAMEL M. Powdered metals as fuel for hypersonic ramjets:AIAA-2001-3919[R]. Reston: AIAA, 2001.
|
4 |
BERGTHORSON J M. Recyclable metal fuels for clean and compact zero-carbon power[J]. Progress in Energy and Combustion Science, 2018, 68: 169-196.
|
5 |
BERGTHORSON J M, YAVOR Y, PALECKA J, et al. Metal-water combustion for clean propulsion and power generation[J]. Applied Energy, 2017, 186: 13-27.
|
6 |
MILLER T F, HERR J D. Green rocket propulsion by reaction of Al and Mg powders and water:AIAA-2004-4037[R]. Reston: AIAA, 2004.
|
7 |
WATERS D F, CADOU C P. Modeling a hybrid Rankine-cycle/fuel-cell underwater propulsion system based on aluminum-water combustion[J]. Journal of Power Sources, 2013, 221: 272-283.
|
8 |
HUANG H T, ZOU M S, GUO X Y, et al. Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet[J]. Combustion, Explosion, and Shock Waves, 2013, 49(5): 541-547.
|
9 |
BARONE D, LOTH E, WEISS P, et al. Feasibility of water-aluminum reactor power (WARP) for long endurance UUVs: AIAA-2011-5904[R]. Reston: AIAA, 2011.
|
10 |
INGENITO A, BRUNO C. Using aluminum for space propulsion[J]. Journal of Propulsion and Power, 2004, 20(6): 1056-1063.
|
11 |
CONNELL T L, RISHA G A, YETTER R A, et al. Combustion of alane and aluminum with water for hydrogen and thermal energy generation[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1957-1965.
|
12 |
TAPPAN B C, DIRMYER M R, RISHA G A. Evidence of a kinetic isotope effect in nanoaluminum and water combustion[J]. Angewandte Chemie, 2014, 126(35): 9372-9375.
|
13 |
RISHA G A, CONNELL T L, YETTER R A, et al. Combustion of frozen nanoaluminum and water mixtures[J]. Journal of Propulsion and Power, 2014, 30(1): 133-142.
|
14 |
GEORGES W, YAVOR Y, HIGGINS A J, et al. Burning rate of nano-aluminum-water propellant at high pressures: AIAA-2014-0648[R]. Reston: AIAA, 2014.
|
15 |
ERMOLAEV B S, KHRAPOVSKII V E, SHMELEV V M. Convective burning of an aluminum-water mixture[J]. Russian Journal of Physical Chemistry B, 2014, 8(5): 680-686.
|
16 |
SUNDARAM D S, YANG V, CONNELL T L, et al. Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2221-2228.
|
17 |
SIPPEL T R, POURPOINT T L, SON S F. Combustion of nanoaluminum and water propellants: Effect of equivalence ratio and safety/aging characterization[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(1): 56-66.
|
18 |
KITTELL D E, GROVEN L J, SIPPEL T R, et al. Dependence of nano-aluminum and water propellant combustion on pH and rheology[J]. Combustion Science and Technology, 2013, 185(5): 817-834.
|
19 |
WOOD T D, PFEIL M A, POURPOINT T L, et al. Feasibility study and demonstration of an aluminum and ice solid propellant: AIAA-2009-4890[R]. Reston: AIAA, 2009.
|
20 |
SABOURIN J L, RISHA G A, YETTER R A, et al. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures[J]. Combustion and Flame, 2008, 154(3): 587-600.
|
21 |
RISHA G A, SON S F, YETTER R A, et al. Combustion of nano-aluminum and liquid water[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2029-2036.
|
22 |
YETTER R A, RISHA G A, SON S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1819-1838.
|
23 |
SUNDARAM D S, YANG V. Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures[J]. Combustion and Flame, 2014, 161(9): 2469-2478.
|
24 |
ZASECK C R, SON S F, POURPOINT T L. Combustion of micron-aluminum and hydrogen peroxide propellants[J]. Combustion and Flame, 2013, 160(1): 184-190.
|
25 |
KI W, SHMELEV V, FINIAKOV S, et al. Combustion of micro aluminum-water mixtures[J]. Combustion and Flame, 2013, 160(12): 2990-2995.
|
26 |
SIPPEL T R, SON S F, GROVEN L J, et al. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum[J]. Combustion and Flame, 2015, 162(3): 846-854.
|
27 |
MARION M, CHAUVEAU C, GÖKALP I. Studies on the ignition and burning of levitated aluminum particles[J]. Combustion Science and Technology, 1996, 115(4/5/6): 369-390.
|
28 |
DREIZIN E L. Experimental study of stages in aluminium particle combustion in air[J]. Combustion and Flame, 1996, 105(4): 541-556.
|
29 |
BUCHER P, YETTER R A, DRYER F L, et al. Flames structure measurement of single, isolated aluminum particles burning in air[J]. Symposium (International) on Combustion, 1996, 26(2): 1899-1908.
|
30 |
GILL R J, BADIOLA C, DREIZIN E L. Combustion times and emission profiles of micron-sized aluminum particles burning in different environments[J]. Combustion and Flame, 2010, 157(11): 2015-2023.
|
31 |
MOHAN S, FURET L, DREIZIN E L. Aluminum particle ignition in different oxidizing environments[J]. Combustion and Flame, 2010, 157(7): 1356-1363.
|
32 |
LYNCH P, KRIER H, GLUMAC N. A correlation for burn time of aluminum particles in the transition regime[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1887-1893.
|
33 |
BECKSTEAD M W. Correlating aluminum burning times[J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533-546.
|
34 |
GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion[J]. Combustion and Flame, 2016, 168: 378-392.
|
35 |
BOJKO B T, DESJARDIN P. Modeling the diffusion to kinetically controlled burning transition of micron-sized aluminum particles: AIAA-2015-0166[R]. Reston: AIAA, 2015.
|
36 |
STARIK A M, KULESHOV P S, SHARIPOV A S, et al. Numerical analysis of nanoaluminum combustion in steam[J]. Combustion and Flame, 2014, 161(6): 1659-1667.
|
37 |
SCHOENITZ M, CHEN C M, DREIZIN E L. Oxidation of aluminum particles in the presence of water[J]. The Journal of Physical Chemistry B, 2009, 113(15): 5136-5140.
|
38 |
WASHBURN E B, TRIVEDI J N, CATOIRE L, et al. The simulation of the combustion of micrometer-sized aluminum particles with steam[J]. Combustion Science and Technology, 2008, 180(8): 1502-1517.
|
39 |
ZHANG J R, XIA Z X, MA L K, et al. Experimental study on aluminum particles combustion in a turbulent jet[J]. Energy, 2021, 214: 118889.
|
40 |
FENG Y C, XIA Z X, HUANG L Y, et al. Ignition and combustion of a single aluminum particle in hot gas flow[J]. Combustion and Flame, 2018, 196: 35-44.
|
41 |
FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single aluminium particles[J]. Energy, 2018, 162: 618-629.
|