[1] Xu G K. Automatic assembly technology for large ai-rcraft[J]. Acta Aeronoutica et Astronautica Sinica, 2008, 29(3): 734-740 (in Chinese). 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3): 734-740.
[2] Bi S S, Liang J. Robotic drilling system for titanium structures[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(6-8): 767-774
[3] Sarh B. Assembly techniques for space vehicles, SAE Paper 2000-01-3028 [R]. New York: SAE, 2000.
[4] Wang M, Chen W L, Zhang D L, et al. Light-weight automatic drilling system and key technology for aircraft[J]. Aeronautical Manufacturing Technology, 2012(19): 40-43 (in Chinese). 王珉, 陈文亮, 张得礼, 等. 飞机轻型自动化制孔系统及关键技术研究[J]. 航空制造技术, 2012(19): 40-43.
[5] Du Z C. Measurement method for evaluating normal direction of surface for digital drilling and riveting[J]. Aeronautical Manufacturing Technology, 2011(22): 108-111 (in Chinese). 杜兆才. 数字化钻铆的曲面法向测量方法[J]. 航空制造技术, 2011(22): 108-111.
[6] Ying G M, Wang Z Q, Kang Y G, et al. Study on normal vector measurement method in auto-drilling & riveting of aircraft panel[J]. Machine Tool & Hydraulics, 2010, 38(23): 1-8 (in Chinese). 应高明, 王仲奇, 康永刚, 等. 飞机壁板自动钻铆法向量测量方法研究[J]. 机床与液压, 2010, 38(23): 1-8.
[7] Qin X S, Wang W D, Lou A L, et al. Three-point bracket regulation algorithm for drilling and riveting of aerofoil[J]. Acta Aeronoutica et Astronautica Sinica, 2007, 28(6): 1455-1460 (in Chinese). 秦现生, 汪文旦, 楼阿莉, 等. 大型壁板数控钻铆的三点快速调平算法[J]. 航空学报, 2007, 28(6): 1455-1460.
[8] Guo Z M, Jiang J X, Ke Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronoutica et Astronautica Sinica, 2009, 30(7): 1319-1324 (in Chinese). 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7): 1319-1324.
[9] Tian W, Zhou W X, Zhou W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[10] Wang M, Zeng C, Chen W L, et al. A kind of parallel mechanism of autonomous mobile for aircraft assembly[J]. Journal of Mechanical Engineering, 2013, 49(15): 49-54 (in Chinese). 王珉, 曾长, 陈文亮, 等. 一种用于飞机装配的八足并联自主移动机构[J]. 机械工程学报, 2013, 49(15): 49-54.
[11] Zhang C J, Li Y W. A new walking robot based on 3-RPC parallel mechanism[J]. Journal of Mechanical Engineering, 2011, 47(15): 25-30 (in Chinese). 张成军, 李艳文. 一种基于3-RPC并联机构的新型步行机器人[J]. 机械工程学报, 2011, 47(15): 25-30.
[12] Huang Z, Zhao Y S, Zhao T S. Advanced spatial mechanism[M]. Beijing: Higher Education Press, 2006: 116-125 (in Chinese). 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006: 116-125.
[13] Liu H W. The analysis of degree of freedom for spatial parallel mechanism[J]. Journal of Mechanical Transmission, 2009, 33(4): 90-92 (in Chinese). 刘宏伟. 空间并联机构的自由度分析[J]. 机械传动, 2009, 33(4): 90-92.
[14] Liu D J, Che R S, Ye D, et al. Error modeling and simulation of 3-DOF parallel link coordinate measuring machine[J]. China Mechanical Engineering, 2001, 12(7): 752-755 (in Chinese). 刘得军, 车仁生, 叶东, 等. 三自由度并联机构坐标测量机误差建模与仿真[J]. 中国机械工程, 2001, 12(7): 752-755.
[15] Yang M L, Qing S X. Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism[J]. Robotica, 2005, 23(2): 219-229.
[16] Zheng X Z, Luo Y G, Bin H Z. Inverse dynamics of 3-UPU parallel mechanism with pure rotation based on D'Alembert principle[C]//Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. Piscataway, NJ: IEEE Press, 2007: 2842-2847.
[17] Huang P, Wang Q, Li J X, et al. Adjustment optimal trajectory planning of aircraft component based on dynamics model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2672-2682 (in Chinese). 黄鹏, 王青, 李江雄, 等. 基于动力学模型的飞机大部件调姿轨迹规划方法[J]. 航空学报, 2014, 35(9): 2672-2682. |