航空学报 > 2014, Vol. 35 Issue (1): 97-104   doi: 10.7527/S1000-6893.2013.0212

导弹大迎角下非线性诱导滚转力矩数值研究

徐柯哲1, 张宇飞1, 陈海昕1, 李斌2, 刘仙名2, 符松1   

  1. 1. 清华大学 航天航空学院, 北京 100084;
    2. 中国空空导弹研究院, 河南 洛阳 471009
  • 收稿日期:2013-02-08 修回日期:2013-04-02 出版日期:2014-01-25 发布日期:2013-05-03
  • 通讯作者: 陈海昕,Tel.:010-62772915 E-mail:chenhaixin@tsinghua.edu.cn E-mail:chenhaixin@tsinghua.edu.cn
  • 作者简介:徐柯哲 男,博士研究生。主要研究方向:空气动力学,计算流体力学。Tel:010-62792707 E-mail:futoubing@gmail.com;张宇飞 男,博士,讲师。主要研究方向:气动设计,计算流体力学。Tel:010-62792707 E-mail:zhangyufei@tsinghua.edu.cn;陈海昕 男,博士,教授。主要研究方向:空气动力学,计算流体力学,气动设计。Tel:010-62772915 E-mail:chenhaixin@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金(11102098,10932005)

Numerical Study of Induced Nonlinear Rolling Moment of Finned Missile at High Angles of Attack

XU Kezhe1, ZHANG Yufei1, CHEN Haixin1, LI Bin2, LIU Xianming2, FU Song1   

  1. 1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
    2. China Airborne Missile Academy, Luoyang 471009, China
  • Received:2013-02-08 Revised:2013-04-02 Online:2014-01-25 Published:2013-05-03
  • Supported by:

    National Natural Science Foundation of China (11102098, 10932005)

摘要:

采用计算流体力学(CFD)数值模拟方法,研究战术导弹大迎角状态下涡破裂导致滚转力矩随迎角非线性增长引起舵面控制能力不足的现象。首先通过标准模型的数值分析,验证了所采用的CFD方法具有三角翼前缘涡破裂现象的捕捉能力;然后采用雷诺平均Navier-Stokes方程对某“++”字正常布局导弹构型(含弹翼、弹身、尾舵和整流罩等)进行了数值模拟,结果显示亚声速状态下滚转力矩在迎角大于20°时出现非线性增长,导致全动尾舵的滚转控制能力不足。通过分解各部件对滚转力矩的贡献,并分析流场结构,探明了该现象发生的流动机理,其主要原因是:随着迎角的增长,弹体迎风面的尾舵前缘涡首先发生破裂,导致其平衡诱导滚转力矩的作用被削弱。

关键词: 导弹, 大迎角, 滚转力矩, 计算流体力学, 涡破裂

Abstract:

The nonlinear effect of a tactical missile's rolling moment at high angles of attack is numerically studied in the present paper. The capability of the computational fluid dynamics (CFD) scheme in capturing leading edge vortex and its breakdown is verified by a standard delta wing model. A missile in normal configuration in "++" layout, consisting of wings, body, tail rudders and cable fairing, is numerically investigated by solving Reynolds averaged Navier-Stokes equations. The results show that the nonlinear rising of the rolling moment appears after the angle of attack becomes greater than 20°, leading to the inadequacy of the rudder's roll control ability. The mechanism of this phenomenon is obtained through the decomposition of the contributions of each component to the rolling moment as well as an analysis on the flow structure. With the increase in the angles of attack, the leading edge vortex of the tail rudder at the windward side breaks first, which weakens its function of restraining the rolling movement.

Key words: missile, high angle of attack, rolling moment, computational fluid dynamics, vortex breakdown

中图分类号: