[1] Li B, Liu X M, Wang X Z. Study of gap effect on aerodynamic characteristics of tactical missile[J]. Tactical Missile Technology, 2012(2): 17-21.(in Chinese) 李斌, 刘仙名, 王学占. 战术导弹全动舵舵面缝隙效应研究[J]. 战术导弹技术, 2012(2): 17-21.
[2] Peter D. A study of the nonlinear rolling motion of a four-finned missile[J]. Journal of Spacecraft and Rockets, 1969, 7(4): 510-512.
[3] Oberkampf W L. Prediction of roll moments on finned bodies in supersonic flow[J]. Journal of Spacecraft and Rockets, 1975, 12(1): 17-27.
[4] Lesieutre D J, Mendenhall M R, Dillenius M F E. Prediction of induced roll on conventional missiles with cruciform fin sections, AIAA-1988-0529[R]. Reston: AIAA, 1988.
[5] Nielsen J N, Smith C A. Prediction of aerodynamic characteristics of cruciform missiles to high angles of attack, AIAA-1979-0024[R]. Reston: AIAA, 1979.
[6] Liu X M, Fu S. Numerical simulation of compressible separated turbulent flows over inclined slender body[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 572-575.
[7] Meyer J. Effects of the roll angle on cruciform wing-body configurations at high incidences[J]. Journal of Spacecraft and Rockets, 1994, 31(1): 113-122.
[8] Kwak D Y, Rinoie K H K, Kato H. Rolling moment characteristics at high alpha on several planforms of cranked arrow wing configuration, AIAA-2009-3937[R]. Reston: AIAA, 2009.
[9] Li X L, Yang Y. Numerical simulation of the free rolling motion of a delta wing configuration with aileron deflection[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 453-462. (in Chinese) 李喜乐, 杨永. 带副翼偏转的三角翼自由滚转运动数值模拟[J]. 航空学报, 2012, 33(3): 453-462.
[10] Balasubramanian R, Shah V, Arora K, et al. Numerical investigations of lateral characteristics of an air-to-air missile[J]. Journal of Aircraft, 2013, 50(1): 87-95.
[11] Jing D Y, Li J. Numerical research of rolling characteristics on canard missiles by fin trailing edge sweepback angle[J]. Flight Dynamics, 2011, 29(4): 77-79.(in Chinese) 敬代勇, 李剑. 鸭式导弹舵面后缘后掠角对滚转影响数值研究[J]. 飞行力学, 2011, 29(4): 77-79.
[12] Jing D Y, Li J. Numerical research of rolling characteristics on canard missiles by distance between fin and wing[J]. Aeronautical Computing Technique, 2009, 39(4): 55-57.(in Chinese) 敬代勇, 李剑. 鸭式导弹舵翼面间距影响滚转的数值研究[J]. 航空计算技术, 2009, 39(4): 55-57.
[13] Gong A L, Zhou W J, Ji C Q. A finned configuration to reduce rolling moment in oblique flows at supersonic speed and high angle of attack and principle analysis of its action[J]. Journal of Astronautics, 2011, 32(2): 250-254.(in Chinese) 龚安龙, 周伟江, 纪楚群. 减小导弹超声速大迎角斜吹力矩的边条布局及其原理分析[J]. 宇航学报, 2011, 32(2): 250-254.
[14] Zhang Y F, Chen H X, Fu S. Improvement to patched grid technique with high-order conservative remapping method[J]. Journal of Aircraft, 2011, 48(3): 884-893.
[15] Zhang Y F, Chen H X, Fu S. A Karman-vortex generator for passive separation control in a conical diffuser[J]. Science China Physics Mechanics Astronomy, 2012, 55(5): 828-836.
[16] Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43: 357-372.
[17] van Leer B, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 31(1): 101-136.
[18] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[19] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-2016.
[20] Hummel D. Review of the second international vortex flow experiment (VFE-2), AIAA-2008-0377[R]. Reston: AIAA, 2008.
[21] Fritz W, Cummings R M. What was learned from the numerical simulations for the VFE-2, AIAA-2008-0399[R]. Reston: AIAA, 2008.
[22] Furman T, Breitsamtery C. Turbulent and unsteady flow characteristics of delta wing vortex systems, AIAA-2008-0381[R]. Reston: AIAA, 2008. |