[1] Ni M, Zhu H R, Qiu Y, et al. Review of aero-turbine blade cooling technologies. Gas Turbine Technology, 2005, 18(4): 25-38. (in Chinese)
倪萌, 朱惠人, 裘云, 等. 航空发动机涡轮叶片冷却技术综述. 燃气轮机技术, 2005, 18(4): 25-38.
[2] Zheng J R, Ji H H, Kong Z K, et al. Experimental investigation on composite cooling of turbine blade. Journal of Aerospace Power, 1989, 4(4): 357-362. (in Chinese)
郑际睿, 吉洪湖, 孔祖开, 等. 涡轮叶片复合冷却的实验研究. 航空动力学报, 1989, 4(4): 357-362.
[3] Hu Y L, Guo W, Liu Y F, et al. Cooling efficiency research on a compound air-cooled. Gas Turbine Experiment and Research, 2004, 17(3): 26-30. (in Chinese)
呼艳丽, 郭文, 刘玉芳, 等. 复合式气冷涡轮导叶综合冷却效率试验研究. 燃气涡轮试验与研究, 2004, 17(3): 26-30.
[4] Hollworth B R, Dagan L. Arrays of impinging jets with spent fluid removal through vent holes on the target surface. Journal of Engineering for Power, 1980, 102(4): 944-999.
[5] Quan D L, Yu X H, Liu S L, et al. Experimental and numerical investigation of internal-flow resistance characteristics in laminate porous plates. Journal of Propulsion Technology, 2003, 24(5): 425-428. (in Chinese)
全栋梁, 郁新华, 刘松龄, 等. 层板冷却结构流阻特性的实验与数值模拟. 推进技术, 2003, 24(5): 425-428.
[6] Funazaki K, Tarukawa Y, Kudo T, et al. Heat transfer characteristics of an integrated cooling configuration for ultra-high temperature turbine blades: experimental and numerical [JP+3]investigations. ASME Paper, GT-2001-148, 2001.
[7] Nakamata C, Okita Y, Matsuno S, et al. Spatial arrangement dependence of cooling performance of an integrated impingement and pin fin cooling configuration. ASME paper, GT-2005-68348, 2005.
[8] Lee D H, Oh S H, Jung E Y. Effect of array jet on cooling effectiveness on full-coverage film cooled surface. Proceedings of the ASME 2009 Heat Transfer Summer Conference, 2009.
[9] Yuan L. Numerical simulation of compound air-cooling turbine blade with parallel computation. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese)
袁丽. 基于并行计算的涡轮叶片复合冷却数值模拟. 南京: 南京航空航天大学能源与动力学院, 2005.
[10] Thurman D, Poinsatte P. Experimental heat transfer and bulk air temperature measurements for a multipass internal cooling model with ribs and bleed. ASME Journal of Turbomachinery, 2001, 123(1): 90-96.
[11] Bunker R S, Bailey J C. Film cooling discharge coefficient measurements in a turbulated passage with internal crossflow. ASME Journal of Turbomachinery, 2001, 123(4): 774-780.
[12] Qiu Y, Zhu H R, Ni M, et al. Effect of rib turbulator orientation on the discharge coefficient of suction hole in the internal passage. Journal of Aerospace Power, 2003, 18(2): 235-238. (in Chinese)
裘云, 朱惠人, 倪萌, 等. 带肋壁与出流孔内流通道中肋角度对流量系数的影响. 航空动力学报, 2003, 18(2): 235-238.
[13] Chantdoup D, Bölcs A. Flow characteristics in two-leg internal coolant passages of gas turbine airfoils with film-cooling hole ejection. ASME Journal of Turbomachinery, 2002, 124(3): 499-507.
[14] Montomoli F, Adami P, Gatta S D, et al. Conjugate heat transfer modeling in film cooled blades. Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air, 2004.
[15] Hylton L D, Mihelc M S, Turneu E R, et al. Analytical and experimental evaluation of the heat transfer distribution over the surface of turbine vanes. NASA-CR-168015, 1983.
[16] Nealy D A, Mihelc M S, Hylton L D, et al, Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes. ASME Journal of Engineering for Gas Turbines and Power, 1984, 106(1): 149-158. |