[1] Kuwata M, Hogg P J. Interlaminar toughness of interleaved CFRP using non-woven veils: Part 1, Mode-I testing. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1551-1559.[2] Thanomsilp C, Hogg P J. Interlaminar fracture toughness of hybrid composites based on commingled yarn fabrics. Composites Science and Technology, 2005, 65(10): 1547-1563.[3] de Moura M F S F, Campilho R D S G, Amaro A M, et al. Interlaminar and intralaminar fracture characterization of composites under Mode I loading. Composite Structures, 2010, 92(1): 144-149.[4] Jiao G Q, Gao J, Deng Q. Mode I interlaminar fracture toughness of composite. Acta Materiae Compositae Sinica, 1994, 11(1): 113-118. (in Chinese) 矫桂琼, 高健, 邓强. 复合材料的Ⅰ型层间断裂韧性. 复合材料学报, 1994, 11(1): 113-118.[5] Jiao G Q, Zhao J H, Jia P R. Method of isolated plies for overcoming the effect of fiber bridging on GIC. Acta Materiae Compositae Sinica, 1996, 13(2): 84-88. (in Chinese) 矫桂琼, 赵剑衡, 贾普荣. 克服纤维桥连对GIC影响的隔离层法. 复合材料学报, 1996, 13(2): 84-88.[6] Liu L, Huang Z M, Zhou Y X, et al. Improvement of Mode I interlaminar fracture thoughness of composites reinforced by ultrathin fibers. Acta Materiae Compositae Sinica, 2007, 24(4): 166-171. (in Chinese) 刘玲, 黄争鸣, 周烨欣, 等. 超细纤维增强复合材料Ⅰ型层间断裂韧性分析. 复合材料学报, 2007, 24(4): 166-171.[7] Daridon L, Cochelin B, Ferry M P. Delamination and fiber bridging modelling in composite samples. Journal of Composite Materials, 1997, 31(9): 874-888.[8] Iwamoto M, Ni Q, Fujiwara T, et al. Intralaminar fracture mechanism in unidirectional CFRP composites: Part I, intralaminar toughness and AE characteristics. Engineering Fracture Mechanics, 1999, 64(6): 721-745.[9] Iwamoto M, Ni Q, Fujiwara T, et al. Intralaminar fracture mechanism in unidirectional CFRP composites: Part II, analysis. Engineering Fracture Mechanics, 1999, 64(6): 747-764.[10] Jiao G Q, Jia P R. Mechanics of composite materials. Xi'an: Northwestern Polytechnical University Press, 2008: 6-18. (in Chinese) 矫桂琼, 贾普荣. 复合材料力学. 西安: 西北工业大学出版社, 2008: 6-18.[11] Long Y Q. Calculation of elastic foundation beam. Beijing: Higher Education Press, 1981: 1-86. (in Chinese) 龙驭球. 弹性地基梁的计算. 北京: 高等教育出版社, 1981: 1-86.[12] D30.06. ASTM D 5528-01 Standard test method for Mode I interlaminar fracture toughness of unidirectional fibre-reinforced polymer matrix composites. West Conshohocken, PA: American Society for Testing and Materials (ASTM), 2001.[13] Brunner A J, Blackman B R K, Williams J G. Calculating a damage parameter and bridging stress from GIC delamination tests on fibre composites. Composites Science and Technology, 2006, 66(6): 785-795.[14] Blackman B R K, Kinloch A J, Paraschi M, et al. Measuring the Mode I adhesive fracture energy, GIC, of structural adhesive joints: the results of an international round-robin. International Journal of Adhesion and Adhesives, 2003, 23(4): 293-305.[15] de Morais A B, de Moura M F, Marques A T, et al. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology, 2002, 62(5): 679-686.[16] Shokrieh M M, Heidari-Rarani M, Ayatollahi M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites. Materials and Design, 2012, 34: 211-218.[17] Daridon L, Zidani K. The stabilizing effects of fiber bridges on delamination cracks. Composites Science and Technology, 2002, 62(1): 83-90. |