航空学报 > 2011, Vol. 32 Issue (3): 410-420   doi: CNKI:11-1929/V.20101213.1757.013

柔性空间结构选频二阶保结构平衡降阶

孟占峰1, 韩潮2   

  1. 1. 中国空间技术研究院 总体部, 北京 100094;
    2. 北京航空航天大学 宇航学院, 北京 100191
  • 收稿日期:2010-04-16 修回日期:2010-05-14 出版日期:2011-03-25 发布日期:2011-03-24
  • 作者简介:孟占峰(1980- ) 男,博士,工程师。主要研究方向:深空探测任务分析与轨道设计,大型柔性多体航天器动力学与控制。 Tel: 010-68746687 E-mail: mengzf@gmail.com韩潮(1960- ) 男,博士,教授,博士生导师。主要研究方向:航天器动力学与控制,航天器导航、制导与控制,航天系统动力学仿真。 E-mail: hanchao@buaa.edu.cn

Frequency-selective Second-order Structure-preserving Balanced Reduction for Flexible Space Structures

MENG Zhanfeng1, HAN Chao2   

  1. 1. Institute of System Engineering, China Academy of Space Technology, Beijing 100094, China;
    2. School of Astronautics, Beihang University, Beijing 100191, China
  • Received:2010-04-16 Revised:2010-05-14 Online:2011-03-25 Published:2011-03-24

摘要: 利用传统的一阶选频内平衡降阶方法进行降阶时,不但破坏了原二阶系统动力学结构,而且降阶过程中的选频Gramian矩阵的求解计算量大、数值稳定性差。利用解耦模态坐标的二阶柔性空间结构(FSS)方程的特殊性,给出了可控和可观Gramian矩阵的选频闭合解析解。为了将FSS动力学模型在指定频段进行降阶并保留原系统的二阶动力学结构,提出了几种不同的二阶选频降阶方法。数值仿真结果表明,所提出的降阶方法可以有效地在指定频段进行降阶,降阶精度可以达到或超过传统的一阶选频内平衡降阶方法。

关键词: 内平衡, 降阶, 二阶系统, 柔性空间结构, 选频, Gramian矩阵

Abstract: The conventional first-order frequency-selective internal balanced truncation can destroy the dynamical properties of flexible space structures (FSS). Moreover, the calculation of frequency-selective Gramians is ineffective and unstable. Therefore, a controllable and observable closed-form solution of frequency-selective Gramians is presented considering special second-order form of FSS equation via frequency definition of Gramians. Several new second-order frequency-selective model reduction methods are proposed for preserving second-order structure and dynamical characteristics of FSS equation. The numerical results show that the new methods can not only achieve almost the same accuracy, but also preserve all the dynamic properties of original system compared with conventional first-order frequency-selective balanced truncation method.

Key words: internal balanced, reduction, second-order system, flexible space structures, frequency-selective, Gramian matrix

中图分类号: