[1] |
DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130:77-91.
|
[2] |
DENG X G, MAO M L, TU G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J]. AIAA Journal, 2010, 48(12):2840-2851.
|
[3] |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22-44.
|
[4] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126:202-228.
|
[5] |
CASPER J, ATKINS H L. A finite-volume high order ENO scheme for two dimensional hyperbolic systems[J]. Journal of Computational Physics, 1993, 106:62-76.
|
[6] |
CASPER J, SHU C W, ATKINS H. Comparison of two formulations for high-order accurate essentially non-oscillatory schemes[J]. AIAA Journal, 1994, 32(10):1970-1977.
|
[7] |
宫兆新,鲁传敬,黄华雄.虚拟解法分析浸入边界法的精度[J].应用数学和力学,2010, 31(10):1141-1151. GONG Z X, LU C J, HUANG H X. Accuracy analysis of the immersed boundary method using the method of manufactured solutions[J]. Applied Mathematics and Mechanics, 2010, 31(10):1141-1151(in Chinese).
|
[8] |
CARPENTER M H, CASPER J. The accuracy of shock capturing in two spatial dimensions:AIAA-1997-2107[R]. Reston, VA:AIAA, 1997.
|
[9] |
SVARD M, NORDSTROM J. Review of summation-by-parts schemes for initial-boundary-value problems[J]. Journal of Computational Physics, 2014, 268:17-38.
|
[10] |
ABARBANEL S, DITKOWSKI A, GUSTAFSSON B. On error bounds of finite difference approximations to partial differential equations-temporal behavior and rate of convergence[J]. Journal of Scientific Computing, 2000, 15(1):79-116.
|
[11] |
赵秉新.一维非定常对流扩散方程的高阶组合紧致迎风格式[J].数值计算与计算机应用,2012, 33(2):138-148. ZHAO B X. A high-order combined compact upwind difference scheme for solving 1D unsteady convection-diffusion equation[J]. Journal on Numerical Methods and Computer Applications, 2012, 33(2):138-148(in Chinese).
|
[12] |
涂国华,邓小刚,闵耀兵,等. CFD空间精度分析方法及4种典型畸形网格中WCNS格式精度测试[J].空气动力学学报,2014, 32(4):425-432. TU G H, DENG X G, MIN Y B, et al. Method for evaluating spatial accuracy order of CFD and applications to WCNS scheme on four typically distorted meshes[J]. Acta Aerodynamica Sinica, 2014, 32(4):425-432(in Chinese).
|
[13] |
MAO M L, ZHU H J, DENG X G, et al. Effect of geometric conservation law on improving spatial accuracy for finite difference schemes on two-dimensional nonsmooth grids[J]. Communications in Computational Physics, 2015, 18(3):673-706.
|
[14] |
HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207:542-567.
|
[15] |
DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230:1100-1115.
|
[16] |
STEGER J L. Implicit finite difference simulation of flow about arbitrary geometrics with application to airfoils:AIAA-1977-0665[R]. Reston, VA:AIAA, 1977.
|
[17] |
STEGER J L. Implicit finite difference simulation of flow about arbitrary two-dimensional geometries[J]. AIAA Journal, 1978, 16(7):679-686.
|
[18] |
YAN Z G, LIU H Y, MAO M L, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers and Fluids, 2016, 127:226-240.
|
[19] |
YAN Z G, LIU H Y, MA Y K, et al. Further improvement of weighted compact nonlinear scheme using compact nonlinear interpolation[J]. Computers and Fluids, 2017, 156:135-145.
|