1 |
SCHMAUS J H, CHOPRA I. Aeromechanics of rigid coaxial rotor models for wind-tunnel testing[J]. Journal of Aircraft, 2017, 54(4): 1486-1497.
|
2 |
DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics, 2019, 32(3): 568-576.
|
3 |
KONUS M F. Vortex wake of coaxial rotors in hover[D]. Berkeley: University of California, Berkeley, 2017.
|
4 |
SILWAL L, RAGHAV V. Preliminary study of the near wake vortex interactions of a coaxial rotor in hover[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020: AIAA2020-0305.
|
5 |
HARIHARAN N, SANKAR L N. High-order essentially nonoscillatory schemes for rotary-wing wake computations[J]. Journal of Aircraft, 2004, 41(2): 258-267.
|
6 |
HARIHARAN N, EKATERINARIS J, SANKAR L. An evaluation of high order spatial accuracy algorithms for modeling fixed and rotary wing tip regions[C]∥AHS Aerodynamics, Acoustics, and Evaluation Technical Specialists Meeting. Rockville: American Helicopter Society, 2002.
|
7 |
YESHALA N, EGOLF A, VASILESCU R, et al. Application of higher order spatially accurate schemes to rotors in hover[C]∥24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006: 2818.
|
8 |
印智昭, 招启军, 王博. 基于高阶WENO格式的旋翼非定常涡流场数值模拟[J]. 航空学报, 2016, 37(8): 2552-2564.
|
|
YIN Z Z, ZHAO Q J, WANG B. Numerical simulations for unsteady vortex flowfield of rotors based on high-order WENO scheme[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2552-2564 (in Chinese).
|
9 |
XU L, WENG P F. Rotor wake capture improvement based on high-order spatially accurate schemes and chimera grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1565-1576.
|
10 |
XU L, WENG P F. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight[J]. Journal of Computational Physics, 2014, 258(C): 470-488.
|
11 |
YANG L, YANG A M. Implementation of spectral difference method on overset grids for compressible inviscid flows[J]. Computers & Fluids, 2016, 140: 500-511.
|
12 |
HAN S Q, SONG W P, HAN Z H. A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover[J]. Chinese Journal of Aeronautics, 2022, 35(5): 260-274.
|
13 |
SUN Y, SHI Y J, XU G H. Application of high-order WENO scheme in the CFD/FW-H method to predict helicopter rotor blade-vortex interaction tonal noise[J]. Aerospace, 2022, 9(4): 196.
|
14 |
CHADERJIAN N, BUNING P. High resolution navier-stokes simulation of rotor wakes[C]∥American Helicopter Society 67th Annual Forum. Rockville: American Helicopter Society, 2011.
|
15 |
CHADERJIAN N. Advances in rotor performance and turbulent wake simulation using DES and adaptive mesh refinement [C]∥Seventh International Conference of Computational Fluid Dynamics. Big Island: ICCFD, 2012: ICCF D7-3506.
|
16 |
YOON S, LEE H C, and Pulliam T H. Computational study of flow interactions in coaxial rotors[C]∥The AHS Technical Meeting on Aeromechanics Design for Vertical Lift. Rockville: American Helicopter Society, 2016: ARC-E-DAA-TN 24718.
|
17 |
YOON S, CHAN W M, PULLIAM T H. Computations of torque-balanced coaxial rotor flows[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 0052.
|
18 |
付炜嘉. 旋翼桨尖涡高精度数值模拟与流动控制研究[D]. 西安: 西北工业大学, 2016: 111-126.
|
|
FU W J. Research on high-precision numerical simulation and flow control of rotor tip vortex[D]. Xi’an: Northwestern Polytechnical University, 2016: 111-126 (in Chinese).
|
19 |
董军, 叶靓. DDES方法在复杂旋翼流场计算中的应用[J]. 航空学报, 2018, 39(6): 121689.
|
|
DONG J, YE L. Application of DDES method to simulation of complicated rotor flowfield[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121689 (in Chinese).
|
20 |
韩少强. 共轴双旋翼流动高精度数值模拟方法研究[D]. 西安:西北工业大学, 2021: 109-140.
|
|
HAN S Q. High-accurate numerical approaches for coaxial rotor blade-tip-vortex simulation[D]. Xi’an: Northwestern Polytechnical University, 2021: 109-140 (in Chinese).
|
21 |
JIA Z Q, LEE S. Aerodynamically induced noise of a lift-offset coaxial rotor with pitch attitude in high-speed forward flight[J]. Journal of Sound and Vibration, 2021, 491: 115737.
|
22 |
HAN S Q, SONG W P, HAN Z H. An improved WENO method based on Gauss-kriging reconstruction with an optimized hyper-parameter[J]. Journal of Computational Physics, 2020, 422: 109742.
|
23 |
卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报, 2019, 40(11): 122906.
|
|
LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 122906 (in Chinese).
|
24 |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
|
25 |
HAASE W, BRAZA M, REVELL A. DESider-A European Effort on Hybrid RANS-LES Modelling[M]. Berlin, Heidelberg: Springer, 2009.
|
26 |
OLSEN J. Compendium of unsteady aerodynamic measurements: AGARD-R-702[R]. Brussels: Advisory Group for Aerospace Research and Development, 1982.
|
27 |
PASSE B J, SRIDHARAN A, BAEDER J D. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 2883.
|