1 |
王适存. 直升机空气动力学[M]. 南京: 航空专业教材编审组, 1985: 1-4.
|
|
WANG S C. Helicopter aerodynamics[M]. Nanjing: Compilation and Review Group of Aviation Professional Textbooks, 1985: 1-4 (in Chinese).
|
2 |
邓景辉. 直升机技术发展与展望[J]. 航空科学技术, 2021, 32(1): 10-16.
|
|
DENG J H. Development and prospect of helicopter technology[J]. Aeronautical Science & Technology, 2021, 32(1): 10-16 (in Chinese).
|
3 |
LEISHMAN J G, ROSEN K M. Challenges in the aerodynamic optimization of high-efficiency proprotors[J]. Journal of the American Helicopter Society, 2011, 56(1): 12004-1200421.
|
4 |
VAN TRUONG K. Modeling aerodynamics, including dynamic stall, for comprehensive analysis of helicopter rotors[J]. Aerospace, 2017, 4(2): 21.
|
5 |
ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2): 214-224.
|
6 |
BAILLY J, BAILLY D. Multifidelity aerodynamic optimization of a helicopter rotor blade[J]. AIAA Journal, 2019, 57(8): 3132-3144.
|
7 |
GUR O, ROSEN A. Comparison between blade-element models of propellers[J]. The Aeronautical Journal, 2008, 112(1138): 689-704.
|
8 |
KOCJAN J, KACHEL S, ROGÓLSKI R. Helicopter main rotor blade parametric design for a preliminary aerodynamic analysis supported by CFD or panel method[J]. Materials, 2022, 15(12): 4275.
|
9 |
LI P, ZHAO Q J, ZHU Q X. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1593-1605.
|
10 |
STAHLHUT C W. Aerodynamic design optimization of proprotors for convertible-rotor concepts[D]. Maryland: University of Maryland, 2012: 16-39.
|
11 |
KHAN W, NAHON M. A propeller model for general forward flight conditions[J]. International Journal of Intelligent Unmanned Systems, 2015, 3(2/3): 72-92.
|
12 |
MACNEILL R, VERSTRAETE D. Blade element momentum theory extended to model low Reynolds number propeller performance[J]. The Aeronautical Journal, 2017, 121(1240): 835-857.
|
13 |
JIMENEZ-GARCIA A, BIAVA M, BARAKOS G N, et al. Tiltrotor CFD Part II - aerodynamic optimisation of tiltrotor blades[J]. The Aeronautical Journal, 2017, 121(1239): 611-636.
|
14 |
孙凯军, 张练, 付义伟, 等. 某型倾转旋翼机的旋翼桨叶气动优化设计[J]. 航空工程进展, 2019, 10(3): 340-347.
|
|
SUN K J, ZHANG L, FU Y W, et al. Aerodynamic optimization design of the rotor blade of a tilt-rotor aircraft[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 340-347 (in Chinese).
|
15 |
闫文辉, 邓佳子, 王向阳, 等. 旋翼螺旋桨巡航及悬停状态气动特性研究[J]. 推进技术, 2022, 43(8): 187-194.
|
|
YAN W H, DENG J Z, WANG X Y, et al. Aerodynamic performance of rotor propeller in cruise and hover status[J]. Journal of Propulsion Technology, 2022, 43(8): 187-194 (in Chinese).
|
16 |
招启军, 徐国华. 基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法[J]. 空气动力学学报, 2006, 24(1): 15-21.
|
|
ZHAO Q J, XU G H. A hybrid method based on Navier-Stokes/free wake/full-potential solver for rotor flow simulations[J]. Acta Aerodynamica Sinica, 2006, 24(1): 15-21 (in Chinese).
|
17 |
招启军, 蒋霜, 李鹏, 等. 基于CFD方法的倾转旋翼/螺旋桨气动优化分析[J]. 空气动力学学报, 2017, 35(4): 544-553.
|
|
QIAO/ZHAO/ZHE) Q J, JIANG S, LI P, et al. Aerodynamic optimization analyses of tiltrotor/propeller based on CFD method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 544-553 (in Chinese).
|
18 |
LEE-RAUSCH E M, BIEDRON R. Simulation of an isolated tiltrotor in hover with an unstructured overset-grid RANS solver[C]∥ Journal of the American Helicopter So-ciety 65th Annual Forum. Fairfax: AHS, 2009.
|
19 |
李鹏, 招启军. 悬停状态倾转旋翼 /机翼干扰流场及气动力的CFD计算[J]. 航空学报, 2014, 35(2): 361-371.
|
|
LI P, ZHAO Q J. CFD calculations on the interaction flowfield and aerodynamics force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 361-371 (in Chinese).
|
20 |
李鹏, 招启军, 汪正中, 等. 过渡状态倾转旋翼气动力模拟的高效CFD方法[J]. 南京航空航天大学学报, 2015, 47(2): 189-197.
|
|
LI P, ZHAO Q J, WANG Z Z, et al. Highly-efficient CFD method for predicting aerodynamic force of tiltrotor in conversion mode[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 189-197 (in Chinese).
|
21 |
ZHAO G Q, ZHAO Q J, LI P, et al. Parametric analyses for effects of RPM and diameter on tiltrotor aerodynamic performances in hovering and cruise mode[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 479-488.
|
22 |
TRAN S A, LIM J W. Interactional aerodynamics of the XV-15 tiltrotor aircraft during conversion maneuvers[J]. Journal of the American Helicopter Society, 2022, 67(3): 56-68.
|
23 |
刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 126091.
|
|
LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126091 (in Chinese).
|
24 |
刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.
|
|
LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380 (in Chinese).
|
25 |
LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006.
|
26 |
PROUTY R W. 直升机性能及稳定性和操纵性[M]. 高正, 译. 北京: 航空工业出版社, 1990: 500-511.
|
|
PROUTY R W . performance Helicopter, stability, and maneu-verability[M]. GAO Z, translated. Beijing: Aviation In-dustry Press, 1990: 500-511 (in Chinese).
|
27 |
THEYS B, DIMITRIADIS G, ANDRIANNE T, et al. Wind tunnel testing of a VTOL MAV propeller in tilted operating mode[C]∥ 2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2014: 1064-1072.
|
28 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|