收稿日期:2024-08-05
修回日期:2024-09-04
接受日期:2024-10-24
出版日期:2024-10-30
发布日期:2024-10-29
通讯作者:
王潇
E-mail:x.wang@nuaa.edu.cn
基金资助:Received:2024-08-05
Revised:2024-09-04
Accepted:2024-10-24
Online:2024-10-30
Published:2024-10-29
Contact:
Xiao WANG
E-mail:x.wang@nuaa.edu.cn
Supported by:摘要:
针对倾转旋翼机悬停、前飞和过渡模式旋翼/机翼的气动干扰特性,根据Neumann边界条件和Hess等效原则提出了一种快速分析旋翼/机翼气动干扰的改进混合涡粒子方法。通过引入单面元-多涡粒子转换和涡粒子自适应数量控制策略,实现了自适应涡粒子数量,进一步优化了计算效率。与旋翼风洞试验数据进行了对比,表明自适应数量混合涡粒子方法相较于传统黏性涡粒子方法可以在提高计算效率的同时得到与试验数据吻合良好的计算结果。随后开展旋翼/机翼气动干扰模型在悬停和过渡模式下的流场分析和数值模拟,探讨了旋翼/机翼气动干扰的影响。结果表明:旋翼/机翼气动干扰模型悬停时机翼阻塞下洗流,虽对旋翼有轻微的增升作用但机翼承受了更大的向下载荷,严重影响了旋翼/机翼模型的有效载荷;随着总距增加,机翼向下载荷引起的升力损失逐渐减小。直升机模式向飞机模式转换过程中,旋翼尾迹使机翼升力在倾转初期有明显损失,中期有明显提升,末期几乎无影响;机翼会改变旋翼的部分尾迹结构,但对旋翼性能影响较小。飞机模式前飞时,旋翼/机翼气动干扰较弱,但仍可观测到机翼的升阻比有所下降。这些发现将为倾转旋翼机气动弹性稳定性分析、高保真度飞行力学模型建立和性能优化提供有利支撑。
中图分类号:
杨一凡, 王潇. 基于改进混合涡粒子法的倾转旋翼机旋翼/机翼气动干扰研究[J]. 航空学报, 2025, 46(7): 131040.
Yifan YANG, Xiao WANG. Enhanced hybrid vortex particle method for aerodynamic analysis of tiltrotor rotor/wing interactions[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 131040.
| 1 | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937. |
| DENG J H. Technical status and development of electric vertical take-off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937 (in Chinese). | |
| 2 | Uber Technologies Inc. Uber Elevate Summit 2017[EB/OL]. [2024-08-05]. . |
| 3 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
| ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
| 4 | CHAUHAN S S, MARTINS J R R A. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of Aircraft, 2020, 57(1): 93-112. |
| 5 | JOHNSON W, YAMAUCHI G, DERBY M, et al. Wind tunnel measurements and calculations of aerodynamic interactions between tiltrotor aircraft: AIAA-2003-0047[R]. Reston: AIAA, 2003. |
| 6 | MATUSKA D, DALE A, LORBER P. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model: NASA-CR-177629[R]. Washington, D.C.: NASA, 1994. |
| 7 | FELKER F F, LIGHT J S. Aerodynamic interactions between a rotor and wing in hover[J]. Journal of the American Helicopter Society, 1988, 33(2): 53-61. |
| 8 | DARABI A, STALKER A, MCVEIGH M, et al. The rotor wake above a tiltrotor airplane-model in hover: AIAA-2003-3596[R]. Reston: AIAA, 2003. |
| 9 | 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 120196. |
| ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120196 (in Chinese). | |
| 10 | HUANG Q J, HE G Y, JIA J K, et al. Numerical simulation on aerodynamic characteristics of transition section of tilt-wing aircraft[J]. Aerospace, 2024, 11(4): 283. |
| 11 | 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. |
| XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920 (in Chinese). | |
| 12 | THOUAULT N, BREITSAMTER C, ADAMS N A. Numerical and experimental analysis of a generic fan-in-wing configuration[J]. Journal of Aircraft, 2009, 46(2): 656-666. |
| 13 | LIU T L, PAN K C. Application of the sliding mesh technique for helicopter rotor flow simulation[J]. Journal of Aeronautics, Astronautics and Aviation, 2012, 44(3): 201-209. |
| 14 | WANG H L, ZHAO Q J, ZHAO G Q, et al. Analyses on aerodynamic interactions of quad-tiltrotor aircraft with variable RPM and diameter[C]∥2021 Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2023: 527-539. |
| 15 | WU Z L, LI C, CAO Y H. Numerical simulation of rotor-wing transient interaction for a tiltrotor in the transition mode[J]. Mathematics, 2019, 7(2): 116. |
| 16 | POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742. |
| 17 | GAONKAR G, PETERS D. Review of dynamic inflow modeling for rotorcraft flight dynamics: AIAA-1986-0845[R]. Reston: AIAA, 1986. |
| 18 | GAONKAR G H, PETERS D A. Effectiveness of current dynamic-inflow models in hover and forward flight[J]. Journal of the American Helicopter Society, 1986, 31(2): 47-57. |
| 19 | PETERS D A, MORILLO J A, NELSON A M. New developments in dynamic wake modeling for dynamics applications[J]. Journal of the American Helicopter Society, 2003, 48(2): 120-127. |
| 20 | WANG Y R, PETERS D A. The lifting rotor inflow mode shapes and blade flapping vibration system eigen-analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134(1/2): 91-105. |
| 21 | KELLER J D. An investigation of helicopter dynamic coupling using an analytical model[J]. Journal of the American Helicopter Society, 1996, 41(4): 322-330. |
| 22 | PETERS D A, BOYD D D, HE C J. Finite-state induced-flow model for rotors in hover and forward flight[J]. Journal of the American Helicopter Society, 1989, 34(4): 5-17. |
| 23 | KOCUREK J D, TANGLER J L. A prescribed wake lifting surface hover performance analysis[J]. Journal of the American Helicopter Society, 1977, 22(1): 24-35. |
| 24 | QUACKENBUSH T R, BLISS D B, ONG C C, et al. Free wake analysis of hover performance using a new influence coefficient method: NASA-CR-4309[R]. Washington, D.C.: NASA, 1990. |
| 25 | 徐国华. 应用自由尾迹分析的新型桨尖旋翼气动特性研究[D]. 南京: 南京航空航天大学, 1996. |
| XU G H. Study on aerodynamic characteristics of a new type of tip rotor using free wake analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1996 (in Chinese). | |
| 26 | KRASNY R. Computation of vortex sheet roll-up in the Trefftz plane[J]. Journal of Fluid Mechanics, 1987, 184: 123-155. |
| 27 | LEONARD A. Vortex methods for flow simulation[J]. Journal of Computational Physics, 1987, 37(3): 289-335. |
| 28 | CHATELAIN P, BRICTEUX L, BACKAERT S, et al. Vortex particle-mesh methods with immersed lifting lines applied to the LES of wind turbine wakes[C]∥ Wake Conference 2011. 2011. |
| 29 | 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰[J]. 航空学报, 2014, 35(3): 643-656. |
| TAN J F, WANG H W, WU C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643-656 (in Chinese). | |
| 30 | 王红波, 祝小平, 周洲, 等. 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报, 2017, 38(4): 120412. |
| WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 120412 (in Chinese). | |
| 31 | 徐川, 刘长文, 鲁可, 等. 基于黏性涡粒子尾迹模型的高速直升机配平特性分析[J]. 航空科学技术, 2023, 34(5): 38-45. |
| XU C, LIU C W, LU K, et al. Trim characteristics analysis on high-speed helicopter using viscous vortex particles wake model[J]. Aeronautical Science & Technology, 2023, 34(5): 38-45 (in Chinese). | |
| 32 | KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2001. |
| 33 | ZHU W G, MORANDINI M, LI S. Viscous vortex particle method coupling with computational structural dynamics for rotor comprehensive analysis[J]. Applied Sciences, 2021, 11(7): 3149. |
| 34 | HESS J L, SMITH A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional bodies[J]. Journal of Ship Research, 1964, 8(4): 22-44. |
| 35 | HE C J, ZHAO J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915. |
| 36 | 王有江. 螺旋桨水动力性能及流场分析的面元-涡粒子耦合算法研究[D]. 西安: 西北工业大学, 2017. |
| WANG Y J. Study on coupling algorithm of panel and vortex particles for hydrodynamic performance and flow field analysis of propeller[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
| 37 | HESS J. Calculation of potential flow about arbitrary three-dimensional lifting bodies: MDC-J0971-01[R]. Alexandria: National Technical Information Service, 1972. |
| 38 | PERDOLT D. Efficient aerodynamic modeling process for a tilt-wing eVTOL using a mid-fidelity computational tool[D]. Munich: Technical University of Munich, 2022. |
| 39 | WANG Y J, ABDEL-MAKSOUD M, SONG B W. Simulating marine propellers with vortex particle method[J]. Physics of Fluids, 2017, 29(1): 017103. |
| 40 | 刘乾, 刘汉儒, 李家辉, 等. 基于面元-涡粒子法的螺旋桨气动特性及噪声研究[J]. 西北工业大学学报, 2022, 40(4): 778-786. |
| LIU Q, LIU H R, LI J H,et al.Research on aerodynamics and aeroacoustics of propeller based on panel-vortex particle method[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 778-786 (in Chinese). | |
| 41 | CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover: NASA-TM-81232[R]. Washington, D.C.: NASA, 1981. |
| 42 | BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal, 1989, 27(5): 569-574. |
| 43 | DOERFFER P, SZULC O. Numerical simulation of model helicopter rotor in hover[J]. Task Quarterly Scientific Bulletin of Academic Computer Centre in Gdansk, 2008, 12(3/4): 227-236. |
| 44 | FELKER F F, SIGNOR D B, YOUNG L A, et al. Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing: NASA-TM-89419[R]. Washington, D.C.: NASA, 1987. |
| 45 | 陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟[D]. 南京: 南京航空航天大学, 2018. |
| CHEN H. Numerical simulation of unsteady aerodynamics of tilting rotorcraft in transition mode[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
| 46 | CHOI S W, KIM J M. Investigation into the aerodynamic performance of the tiltrotor unmanned aerial vehicle proprotor[J]. Journal of Aircraft, 2010, 47(3): 1083-1086. |
| 47 | ZHANG Y, YE L, YANG S. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model[J]. Chinese Journal of Aeronautics, 2015, 28(1): 93-102. |
| 48 | BRAMWELL A R S, BALMFORD D, DONE G. Bramwell’s helicopter dynamics[M]. Amsterdam: Elsevier, 2001. |
| [1] | 王冶平, 吉洪蕾, 周攀, 叶毅. 基于涡管模型的倾转四旋翼气动干扰快速分析[J]. 航空学报, 2025, 46(2): 130705-130705. |
| [2] | 孙朋朋, 刘平安, 樊枫, 曾伟. 悬停状态共轴刚性旋翼机身气动干扰特性[J]. 航空学报, 2024, 45(9): 529284-529284. |
| [3] | 张卫国, 唐敏, 武杰, 彭先敏, 章贵川, 聂博文, 王亮权, 李超群. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114-530114. |
| [4] | 龚煜廉, 张建国, 吴志刚, 褚光远, 范晓铎, 黄赢. 主动学习基自适应PC⁃Kriging模型的复合材料结构可靠度算法[J]. 航空学报, 2024, 45(8): 228982-228982. |
| [5] | 李军府, 陈晴, 王伟, 韩忠华, 谭玉婷, 丁玉临, 谢露, 乔建领, 宋科, 艾俊强. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613-629613. |
| [6] | 陈树生, 贾苜梁, 刘衍旭, 高正红, 向星皓. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595-629595. |
| [7] | 陈其昌, 史志伟, 张维源, 姚灵珑, 童晟翔. 展开式变体垂直起降飞行器气动布局与控制策略设计及飞行验证[J]. 航空学报, 2024, 45(6): 629583-629583. |
| [8] | 陈树生, 冯聪, 张兆康, 赵轲, 张新洋, 高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596-629596. |
| [9] | 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报, 2024, 45(5): 529937-529937. |
| [10] | 王为, 安伟刚, 宋笔锋, 杨文青. 仿信天翁变形翼动态滑翔获能特性[J]. 航空学报, 2024, 45(24): 630576-630576. |
| [11] | 周攀, 陈仁良, 杨柠檬, 聂博文, 李国强. 倾转四旋翼飞行器操纵策略[J]. 航空学报, 2024, 45(22): 130165-130165. |
| [12] | 李斌, 张泽南, 贾飞, 孙健, 刘彦菊, 冷劲松. 变翼尖机翼技术研究现状与发展趋势[J]. 航空学报, 2024, 45(19): 30042-030042. |
| [13] | 张伟, 聂旭涛, 欧李苇, 夏智勋, 陈磊. 基于频率加权的后缘拍动变体机翼流场模态分解[J]. 航空学报, 2024, 45(18): 129846-129846. |
| [14] | 王巍, 王浩, 周艾, 冯贺. 变弯度机翼外形与拓扑分步优化设计[J]. 航空学报, 2024, 45(18): 129990-129990. |
| [15] | 郑多, 初治辰, 林德福, 尉明军, 岳思怡. 考虑集群尾涡气动耦合效应飞行安全约束的协同制导技术[J]. 航空学报, 2024, 45(18): 329906-329906. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学


