1 |
《降落伞技术导论》编写组. 降落伞技术导论[M]. 北京:国防工业出版社, 1977: 113-117.
|
|
“Introduction to Parachute Technology” Writing Group. Introduction to parachute technology[M].Beijing: National Defense Industry Press, 1977: 113-117 (in Chinese).
|
2 |
WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview[C]∥Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003.
|
3 |
ADAMS D S, WITKOWSKI A, KANDIS M. Phoenix Mars Scout parachute flight behavior and observations[C]∥2011 IEEE Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8.
|
4 |
CRUZ J R, WAY D W, SHIDNER J D, et al. Reconstruction of the Mars science laboratory parachute performance[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1185-1196.
|
5 |
STEINBERG S Y, SIEMERS P M III, SLAYMAN R G. Velopment of the Viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1974, 11(2): 101-107.
|
6 |
李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学: 技术科学, 2022, 52(2): 264-277.
|
|
LI J, FANG G H, LÜ Z H, et al. Design and verification of parachute deceleration subsystem of Tianwen-1 Mars probe[J]. Scientia Sinica (Technologica), 2022, 52(2): 264-277 (in Chinese).
|
7 |
荣伟, 高树义, 李健, 等. 神舟飞船降落伞系统减速策略及其可靠性验证[J]. 中国科学: 技术科学, 2014, 44(3): 251-260.
|
|
RONG W, GAO S Y, LI J, et al. The deceleration strategy and reliability validation of the parachute system on the Shenzhou spacecraft[J]. Scientia Sinica (Technologica), 2014, 44(3): 251-260 (in Chinese).
|
8 |
PREISSER J S, GROW R B. High-altitude flight test of a reefed 12.2-meter-diameter disk-gap-band parachute with deployment at a Mach number of 2.58[R]. Washington, D.C.: NASA, 1971.
|
9 |
ECKSTROM C, BRANSCOME D R. High altitude flight test of a disk gap band parachute deployed behind a bluff body at a Mach number of 2.69[R]. Washington, D.C.: NASA, 1973.
|
10 |
WITKOWSKI A, KANDIS M. Reefing the Mars Science Laboratory parachute[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-6.
|
11 |
WITKOWSKI A, KANDIS M, REUTER J, et al. Design of subscale parachute models for MSL supersonic wind tunnel testing[C]∥Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
12 |
贾贺, 荣伟. ExoMars 2016火星探测计划进入、减速、着陆的验证任务分析[J]. 航天器工程, 2013, 22(4): 109-115.
|
|
JIA H, RONG W. Review and analysis of EDL demonstrator module of ExoMars 2016 mission[J]. Spacecraft Engineering, 2013, 22(4): 109-115 (in Chinese).
|
13 |
余莉. 气动减速技术[M]. 北京: 科学出版社, 2018.
|
|
YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese).
|
14 |
夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制—“恐怖”七分钟[M]. 北京: 科学出版社, 2017:34-38.
|
|
XIA Y Q. Navigation, guidance and control of Mars rover entry, descent and landing—seven minutes of terror[M]. Beijing: Science Press, 2017:34-38 (in Chinese).
|
15 |
HALL N. Mars atmosphere model[EB/OL]. (2021-05-13)[2021-07-27]. .
|
16 |
刘凯欣, 王景焘, 王刚, 等. 时-空守恒元解元(CE/SE)方法综述[J]. 力学进展, 2011, 41(4): 447-461.
|
|
LIU K X, WANG J T, WANG G, et al. A review on the CE/SE method[J]. Advances in Mechanics, 2011, 41(4): 447-461 (in Chinese).
|
17 |
CHANG S C. The method of space-time conservation element and solution element—a new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295-324.
|
18 |
CHANG S C, WANG X Y, CHOW C Y. The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws[J]. Journal of Computational Physics, 1999, 156(1): 89-136.
|
19 |
刘海涛, 徐建中. 求解Euler方程的空间—时间守恒格式[J]. 工程热物理学报, 1997, 18(3): 294-299.
|
|
LIU H T, XU J Z. A space-time conservation scheme for solving the two-dimensional Euler equations[J]. Journal of Engineering Thermophysics, 1997, 18(3): 294-299 (in Chinese).
|
20 |
张德良, 谢巍, 郭长铭, 等. 气相爆轰胞格结构和马赫反射数值模拟[J]. 爆炸与冲击, 2001, 21(3): 161-167.
|
|
ZHANG D L, XIE W, GUO C M, et al. Numerical simulation of cellar structures and Mach reflection of gaseous detonation waves[J]. Explosion and Shock Waves, 2001, 21(3): 161-167 (in Chinese).
|
21 |
张增产, 沈孟育. 改进的时空守恒元和解元方法[J]. 清华大学学报(自然科学版), 1997, 37(8): 67-70.
|
|
ZHANG Z C, SHEN M Y. Improved space-time conservation element and solution element method[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 67-70 (in Chinese).
|
22 |
辛春亮, 朱星宇, 王凯, 等. LS-DYNA有限元建模、分析和优化设计[M]. 北京: 清华大学出版社, 2022.
|
|
XIN C L, ZHU X Y, WANG K, et al. LS-DYNA finite element modeling, analysis and optimization design[M]. Beijing: Tsinghua University Press, 2022 (in Chinese).
|
23 |
SOTIROPOULOS F, YANG X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65: 1-21.
|
24 |
杨璐瑜, 张红英, 陆伟伟, 等. 盘缝带伞超声速开伞过程研究[J]. 航天返回与遥感, 2016, 37(3): 29-38.
|
|
YANG L Y, ZHANG H Y, LU W W, et al. Study on the deployment of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(3): 29-38 (in Chinese).
|
25 |
杨璐瑜, 陆伟伟, 张红英, 等. 速度对火星用盘缝带伞超声速开伞性能影响[J]. 航空计算技术, 2016, 46(5): 34-37.
|
|
YANG L Y, LU W W, ZHANG H Y, et al. Effect of velocity on performance of Mars disk-gap-band parachutes in supersonic flow[J]. Aeronautical Computing Technique, 2016, 46(5): 34-37 (in Chinese).
|
26 |
王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44.
|
|
WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1): 35-44 (in Chinese).
|
27 |
ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification Approach[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
28 |
SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
29 |
CLINTON V E, JOHN S P. Flight test of a 40 foot nominal diameter disk-gap-band parachute deployed at a Mach number of 2.72 and a dynamic pressure of 9.7 pounds per square foot[R]. Washington, D.C.: NASA, 1968.
|