航空学报 > 2024, Vol. 45 Issue (4): 630194-630194   doi: 10.7527/S1000-6893.2024.30194

航空发动机整机振动辨识与抑制专栏

航空发动机振动监测与故障诊断技术研究进展

胡明辉1,2, 高金吉1,3(), 江志农1,2, 王维民1,3, 邹利民2, 周涛3, 凡云峰3, 王越3, 冯家欣3, 李晨阳2   

  1. 1.北京化工大学 高端压缩机及系统技术全国重点实验室,北京 100029
    2.北京化工大学 发动机健康监控及网络化教育部重点实验室,北京 100029
    3.北京化工大学 高端机械装备健康监控与自愈化北京市重点实验室,北京 100029
  • 收稿日期:2024-01-19 修回日期:2024-02-05 接受日期:2024-02-22 出版日期:2024-02-25 发布日期:2024-02-27
  • 通讯作者: 高金吉 E-mail:gaojinji@263.net
  • 基金资助:
    国家自然科学基金(92160203);特殊领域青年人才托举工程(2022-JCJQ-QT-059);装备预研教育部联合基金

Research progress on vibration monitoring and fault diagnosis for aero-engine

Minghui HU1,2, Jinji GAO1,3(), Zhinong JIANG1,2, Weimin WANG1,3, Limin ZOU2, Tao ZHOU3, Yunfeng FAN3, Yue WANG3, Jiaxin FENG3, Chenyang LI2   

  1. 1.State Key Laboratory of High-end Compressor and System Technology,Beijing University of Chemical Technology,Beijing 100029,China
    2.Key Lab of Engine Health Monitoring-Control and Networking of Ministry of Education,Beijing University of Chemical Technology,Beijing 100029,China
    3.Beijing Key Laboratory of Health Monitoring and Self-Recovery for High-end Mechanical Equipment,Beijing University of Chemical Technology,Beijing 100029,China
  • Received:2024-01-19 Revised:2024-02-05 Accepted:2024-02-22 Online:2024-02-25 Published:2024-02-27
  • Contact: Jinji GAO E-mail:gaojinji@263.net
  • Supported by:
    National Natural Science Foundation of China(92160203);Youth Talent Support Project(2022-JCJQ-QT-059);Joint Fund of the Ministry of Education of the People’s Republic of China(8091B022203)

摘要:

航空发动机汇集各领域高精尖技术,是国家科技、工业和国防实力的综合体现。复杂结构与恶劣服役环境致使其故障频发,发动机故障诊断与健康管理技术成为保障其安全、可靠运行的重要支撑。由于振动类故障是航空发动机的主要故障模式,本文从整机振动监测与故障诊断的系统研制与应用、理论研究现状及发展方向3个方面,对国内外现有航空发动机振动类故障诊断技术进行梳理、剖析,具体包括动力学分析、信号处理及深度学习等相关技术,分析航空发动机振动类故障诊断面临的问题与挑战,并归纳未来发展趋势。

关键词: 航空发动机, 故障诊断, 振动分析, 动力学模型, 信号处理, 智能诊断

Abstract:

Aeroengine amalgamates state-of-the-art technologies across diverse domains, serving as a comprehensive manifestation of a nation’s prowess in science and industry. Frequent malfunctions occur due to its complicated structure and harsh service environment. Therefore, it is essential to employ prognostic and health management technology to provide crucial support for aviation safety and reliable operations. As vibration faults constitute a primary failure mode in aeroengine, this paper, grounded in this premise, systematically reviews and analyzes existing vibration monitoring and fault diagnosis for aviation engines both domestically and internationally. The analysis is categorized into three dimensions, covering the application of overall vibration monitoring and diagnostic systems, typical fault characteristics and diagnostic methods, and the overall vibration fault diagnostic technology, including dynamic analysis, signal processing techniques, and relevant technologies such as deep learning. Then, the problems and challenges faced by the existing vibration fault diagnosis of aeroengine are identified. Furthermore, future development goals are provided.

Key words: aeroengine, fault diagnosis, vibration analysis, dynamical model, signal processing, intelligent diagnosis

中图分类号: