胡明辉1,2, 高金吉1,3(), 江志农1,2, 王维民1,3, 邹利民2, 周涛3, 凡云峰3, 王越3, 冯家欣3, 李晨阳2
收稿日期:
2024-01-19
修回日期:
2024-02-05
接受日期:
2024-02-22
出版日期:
2024-02-25
发布日期:
2024-02-27
通讯作者:
高金吉
E-mail:gaojinji@263.net
基金资助:
Minghui HU1,2, Jinji GAO1,3(), Zhinong JIANG1,2, Weimin WANG1,3, Limin ZOU2, Tao ZHOU3, Yunfeng FAN3, Yue WANG3, Jiaxin FENG3, Chenyang LI2
Received:
2024-01-19
Revised:
2024-02-05
Accepted:
2024-02-22
Online:
2024-02-25
Published:
2024-02-27
Contact:
Jinji GAO
E-mail:gaojinji@263.net
Supported by:
摘要:
航空发动机汇集各领域高精尖技术,是国家科技、工业和国防实力的综合体现。复杂结构与恶劣服役环境致使其故障频发,发动机故障诊断与健康管理技术成为保障其安全、可靠运行的重要支撑。由于振动类故障是航空发动机的主要故障模式,本文从整机振动监测与故障诊断的系统研制与应用、理论研究现状及发展方向3个方面,对国内外现有航空发动机振动类故障诊断技术进行梳理、剖析,具体包括动力学分析、信号处理及深度学习等相关技术,分析航空发动机振动类故障诊断面临的问题与挑战,并归纳未来发展趋势。
中图分类号:
胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194.
Minghui HU, Jinji GAO, Zhinong JIANG, Weimin WANG, Limin ZOU, Tao ZHOU, Yunfeng FAN, Yue WANG, Jiaxin FENG, Chenyang LI. Research progress on vibration monitoring and fault diagnosis for aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194-630194.
表 1
美国航空发动机分段发展的预测与健康管理系统[12]
名称 | 状态监视系统 | 状态监测与诊断系统 | 诊断与健康管理系统 | 预测与健康管理系统 |
---|---|---|---|---|
举例 | F404-GE-400 | F100-PW-200 | F119 | F135 |
系统 特点 | 振动告警、振动趋势分析、修正平衡、频谱分析、响应特性分析 | 空中状况监测、振动测量、发动机寿命计数器、相对损伤图表 | 发动机状态监测、机载诊断、机载内试验和可检查性 | 机载振动监测、故障监测和故障隔离、故障预测、任务评估 |
维修 策略 | 事后维修 | 定时/事后维修 | 视情维修 | 预测维修 |
军事 需求 | 飞行安全 | 飞行安全/经济性 | 飞行安全/经济性 | 飞行安全/经济性 |
技术 文件 | SAE AS 8054A-2012,MIL-E-5007D | SAE ARP 1587, JSGS-87231A | SAE ARP 1587B, JSSG-2007A | SAE AIR 4061B, JSSG-2007B |
表 2
故障特征及诊断方法研究现状汇总
故障类型 | 故障原因 | 故障特征 | 诊断方法 | 进一步研究内容 |
---|---|---|---|---|
转子不平衡 | 零部件缺陷、磨损或损坏;装配不当;叶片掉块;热不平衡等 | 工频幅值变化是不平衡故障的一个显著特征;在同转和对转的双转子系统中,当高、低压转子的转速差较小时,系统拍振响应明显,振动响应较大改变中介轴承、挤压油膜阻尼器等部件的相关参数,会影响转子系统不同位置的不平衡响应大小。 | 多采用频谱分析工频幅值变化,结合航空发动机不平衡故障的振动特性,综合诊断转子不平衡故障。 | 1) 构建考虑多部件耦合状态下的航空发动机模型,并综合考虑各部件参数变化时的振动响应特性; 2) 研究航空发动机转子不平衡的故障定位以及定量诊断技术。 |
支承不同心 | 装配不当;零部件损伤;轴线偏移;轴承故障;设计缺陷等 | 振动响应中转子转频的2倍频响应占据主导,是支承不同心故障的典型特征之一;轴向和径向2倍频幅值相对于工频幅值的大小可以表征支承不同心故障的严重程度;轴心轨迹包含了支承不同心的位置和方向信息。 | 多采用频谱分析转子转频及其倍频成分(尤其是2倍频成分),同时结合轴心轨迹(但通常不具备实测条件),综合诊断支承不同心故障。 | 1) 考虑非线性支承等因素建立结构更加复杂的航空发动机动力学模型。 2) 现有支承不同心故障特征与转子不对中故障特征相似,未来需要基于支承不同心故障理论研究建立针对航空发动机支承不同心故障的诊断方法。 3) 对于航空发动机来说,支承不同心故障的定量分析是一个难题。 |
转子不对中 | 联轴器装配不当;转子轴线偏移;润滑不良;热膨胀;轴线偏移等 | 2倍频振动响应是不对中故障的一个显著特征;不对中故障可能引起系统的超谐共振,基频在临界转速下会引起共振,2倍频会在1/2临界转速下引起共振;联轴器的不对中量等参数会影响倍频振动的振幅变化;低压转子发生不对中故障时,由于耦合作用,低压转子不对中故障会影响高压转子的振动响应。 | 多采用频谱分析二倍频幅值变化,结合航空发动机转子不对中故障振动特性,综合诊断转子不对中故障。 | 1) 建立航空发动机套筒联轴器动力学模型,研究故障振动特性; 2) 结合航空发动机实测数据以及动力学模型,研究航空发动机转子不对中传递规律。 |
动静碰摩 | 装配不当;支承松动;叶片损伤;振动超标; 过度热量等 | 1) 碰摩故障振动频谱包含:基频振动,倍频振动和分频振动,以及复合频率振动; 2) 参数变化对系统振动响应的影响,可辅助识别出碰摩故障; 3) 碰摩故障发生时扭转振动的特征频率更适合判断碰摩故障的发生。 | 对碰摩故障振动信号进行傅里叶变换、Wigner-Ville分布、小波变换和 HHT 变换等分析,可有效分析碰摩故障特征频率。 | 1) 构建考虑实际航空发动机复杂运行环境及快变工况的碰摩故障仿真模型。 2) 发展可基于有限测点数据的航空发动机碰摩故障诊断及损伤程度评估方法。 |
叶片断裂 | 疲劳裂纹;外部物体撞击;热膨胀;设计缺陷等 | 1) 叶片断裂后突加的冲击载荷在静子传递过程中会严重衰减,阻尼会降低冲击响应的极值; 2) 叶片脱落的瞬间会产生较大的瞬态冲击力及系统阻尼,同时叶片会激起转子的低阶固有振型; 3) 叶片断裂会在机匣上产生叶片通过频率振动的变化,并且在通过频率附近激励起双转子转速差的倍频成分。 | 采用稀疏谐波积谱、时域跟踪、时频转换、高频小波、BTT技术、倒频谱、自适应卡尔曼滤波等方法,结合多通道卷积神经网络等人工智能算法,可用于叶片断裂故障诊断。 | 1) 考虑航发多结构耦合下的叶片动力学模型,研究叶片断裂参数与故障特征之间的关联性,挖掘动力学模型所得响应特征在实际工程中的应用。 2) 研究机理与信号处理算法相结合的叶片断裂故障诊断方法,分析振动信号中叶片断裂故障的敏感特征。 3) 探索并着手应用基于叶片振动测试的断裂、裂纹故障监测诊断技术。 4) 人工智能技术在叶片断裂故障诊断方面的研究与应用。 |
结构共振 | 设计问题;温度变化;材料和结构缺陷;叶片失衡;复杂激振等 | 当转子产生裂纹时,形成的激励引发转子的亚谐共振和超谐共振,其中超谐共振响应以2阶、3阶为主;当转子产生碰摩时,形成的激励引发转子的亚谐共振、组合共振,其中亚谐共振以1/2阶为主。 | 利用激励频率的振动趋势图,结合频谱分析,综合诊断结构共振类故障。 | 1) 真实情况下,信号多采集自航空发动机机匣测点。未来可在现有转子系统响应特征的基础上,建立充分考虑薄壁机匣结构、弹性支承等复杂结构的航空发动机动力学模型,研究响应特征与机匣采集信号间的传递关系。 2) 现有高质量数据积累较少,可将案例数据与小样本学习相结合,实现故障的智能诊断。 |
主轴承损伤 | 过度负载;振动超标;润滑不足;材料疲劳、磨损;装配不当等 | 时域参数包括有效值、方均根值、峰值等有量纲参数,峭度、峰值因数、波形因数、裕度指标等无量纲参数,监测特征参数随轴承故障发生、发展的变化规律;频域中故障特征频率及其倍频成分。 | 基于轴承故障信号的冲击、调制特性,学者们建立了一系列的降噪、解调算法,以从机匣大振动信号中提取轴承微弱故障特征;基于标准化欧氏距离等的多特征融合诊断评估;滑油屑末、弱磁检测等多传感器信息融合诊断;CNN、SVDD、SVM等智能诊断方法。 | 1) 虑及发动机薄壁结构、弹性支承等复杂结构,可用于发动机运行数据分析的特征提取方法; 2) 高精度、高计算效率的多元信息融合与智能诊断方法。 3) 对轴承进行定量诊断及剩余寿命预测。 |
1 | 金伟. “中国制造2025” 下航空工业的发展前景[J]. 国防科技工业, 2016(7): 48-51. |
JIN W. Development prospect of aviation industry under “Made in China 2025” [J]. Defence Science & Technology Industry, 2016(7): 48-51 (in Chinese). | |
2 | JIANG Z N, HU M H, FENG K, et al. Weak fault feature extraction scheme for intershaft bearings based on linear prediction and order tracking in the rotation speed difference domain[J]. Applied Sciences, 2017, 7(9): 937. |
3 | 新浪军事.歼10 B坠毁原因疑似曝光:低空遇发动机停车老毛病 [EB/OL].(2014-01-15)[2024-01-19]. . |
Military Sina. Reason for J10B crash suspected to be exposed: low altitude encounter engine stopping old problems [EB/OL].(2014-01-15)[2024-01-19]. (in Chinese). | |
4 | 曾声奎, Pecht Michael G, 吴际. 故障预测与健康管理(PHM)技术的现状与发展[J]. 航空学报, 2005, 26(5): 626-632. |
ZENG S K, MICHAEL G P, WU J. Status and perspectives of prognostics and health management technologies[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5): 626-632 (in Chinese). | |
5 | HESS A, CALVELLO G, DABNEY T. PHM a key enabler for the JSF autonomic logistics support concept[C]∥2004 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2004: 3543-3550. |
6 | VOLPONI A J. Gas turbine engine health management: Past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 051201. |
7 | SHIN J. The NASA aviation safety program: Overview[C]∥Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air.New York:ASME, 2014. |
8 | 张宝诚, 刘孝安. 航空发动机可靠性和经济性[M]. 北京: 国防工业出版社, 1998. |
ZHANG B C, LIU X A. Reliability and economy of aero-engine[M]. Beijing: National Defense Industry Press, 1998 (in Chinese). | |
9 | BEALE J K, HESS A. Experiences with A-7E and the AV-8B engine monitoring systems: The good and the ugly[C]∥2000 IEEE Aerospace Conference Proceedings (Cat. No.00TH8484). Piscataway: IEEE Press, 2002: 221-227. |
10 | HALL C L, LEARY S, LAPIERRE L, et al. F/A-18E/F F414 advanced inflight engine condition monitoring system (IECMS)[C]∥2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542). Piscataway: IEEE Press, 2001: 3069-3082. |
11 | 王偉生, 肖金彪. 航空发动机健康管理系统及其标准分析[J]. 航空动力, 2019(1): 68-70. |
WANG W S, XIAO J B. Analysis of aero engine health management & its standards[J]. Aerospace Power, 2019(1): 68-70 (in Chinese). | |
12 | 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014. |
WEI X K, YANG L, LIU F, et al. Aeroengine prognostics and health management[M]. Beijing: National Defense Industry Press, 2014 (in Chinese). | |
13 | BROWN E R, MCCOLLOM N N, MOORE E E, et al. Prognostics and health management A data-driven approach to supporting the F-35 lightning II[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-12. |
14 | WARWICK T. Overview of ARP 1587 Aircraft gas turbine engine monitoring system guide[R]. Warrendale: SAE International, 1980. |
15 | SAE. Aircraft gas turbine engine health management system guide: AIR1587B-2007 [S]. Warrendale: SAE International, 2007. |
16 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理: 现状、挑战与机遇-地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574. |
CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero enginediagnostics & health management Il: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica. 2022, 43(9): 625574 (in Chinese). | |
17 | 张津. 民用航空发动机状态监视和故障诊断系统研究[J]. 航空动力学报, 1994, 9(4): 339-343. |
ZHANG J. Research on condition monitoring and fault diagnosis system of civil aviation engine[J]. Journal of Aerospace Power, 1994, 9(4): 339-343 (in Chinese). | |
18 | 唐锡宽, 刘清瑞, 杨巍, 等. 高速数据采集和分析系统研究[J]. 航空动力学报, 1994, 9(2): 60-64. |
TANG X K, LIU Q R, YANG W, et al. Research on high-speed data acquisition and analysis system[J]. Journal of Aerospace Power, 1994, 9(2): 60-64 (in Chinese). | |
19 | 张永峰. 飞行试验中航空发动机振动监测[D]. 西安: 西北工业大学, 2003. |
ZHANG Y F. Research on inflight engine vibration monitoring[D].Xi’an: Northwestern Polytechnical University, 2003 (in Chinese). | |
20 | 廖丽惠, 李喜发,耿中行. 航空发动机振动监测与分析系统的研究与实现[C]∥第二十一届全国振动与噪声高技术及应用学术会议, 2008 . |
LIAO L H, LI X F, GENG Z X. Research and implementation of aero-engine vibration monitoring and analysis system[C]∥21st National Conference on Vibration and Noise High Technology and Application, 2008 (in Chinese). | |
21 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、 挑战与机遇-气路、 机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573. |
CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-enginediagnostics & health management I : Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573 (in Chinese). | |
22 | GEGGITT. Engine health and vibration monitoring[EB/OL]. (2023-12-30) [2024-01-19]. . |
23 | NAIRAC A, TOWNSEND N, CARR R, et al. A system for the analysis of jet engine vibration data [J]. Integrated Computer-Aided Engineering, 1999, 6(1): 53-66. |
24 | LAND J E. HUMS-the benefits-past, present and future[C]∥2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542). Piscataway: IEEE Press, 2001: 3083-3094. |
25 | MATHUR A, HASTE D, DOMAGALA C. Application of a dependency-model-based health inference and troubleshooting strategy to a HUMS-enabled advanced maintenance concept [J]. 2003. |
26 | 随时随地进行预测性维护:霍尼韦尔引领互联直升机新时代 [EB/OL]. (2018-04-03) [2024-01-19]. . |
Predictive maintenance anytime, anywhere: Honeywell leads a new era of connected helicopters [EB/OL]. (2018-04-03) [2024-01-19]. (in Chinese). | |
27 | GUPTA K, GUPTA K D, ATHRE K. Unbalance response of a dual rotor system: Theory and experiment[J]. Journal of Vibration and Acoustics, 1993, 115(4): 427-435. |
28 | FERRARIS G, MAISONNEUVE V, LALANNE M. Prediction of the dynamic behavior of non-symmetrical coaxial co-or counter-rotating rotors[J]. Journal of Sound and Vibration, 1996, 195(4): 649-666. |
29 | 胡绚, 罗贵火, 高德平. 反向旋转双转子稳态响应计算分析与试验[J]. 航空动力学报, 2007, 22(7): 1044-1049. |
HU X, LUO G H, GAO D P. Numerical analysis and experiment of counter-rotating dual-rotor’s steady-state response[J]. Journal of Aerospace Power, 2007, 22(7): 1044-1049 (in Chinese). | |
30 | 蒋云帆, 廖明夫, 刘永泉, 等. 同转/对转双转子系统的动力学特性[J]. 航空动力学报, 2013, 28(12): 2771-2780. |
JIANG Y F, LIAO M F, LIU Y Q, et al. Dynamic characteristics of co-rotating/counter-rotating dual-rotor system[J]. Journal of Aerospace Power, 2013, 28(12): 2771-2780 (in Chinese). | |
31 | 韩军, 高德平, 胡绚. 一种基于模型的双转子不平衡故障诊断方法[J]. 航空动力学报, 2008, 23(5): 932-938. |
HAN J, GAO D P, HU X. A model-based diagnosis method of unbalance faults for dual-spool system[J]. Journal of Aerospace Power, 2008, 23(5): 932-938 (in Chinese). | |
32 | 韩军, 高德平, 胡绚, 等. 航空发动机双转子系统的拍振分析[J]. 航空学报, 2007, 28(6): 1369-1373. |
HAN J, GAO D P, HU X, et al. Research on beat vibration of dual-rotor for aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1369-1373 (in Chinese). | |
33 | 廖明夫, 刘永泉, 王四季, 等. 中介轴承对双转子振动的影响[J]. 机械科学与技术, 2013, 32(5): 641-646. |
LIAO M F, LIU Y Q, WANG S J, et al. The vibration features of a twin spool rotor system with an inter-bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(5): 641-646 (in Chinese). | |
34 | 廖明夫, 于潇, 王四季, 等. 双转子系统的振动[J]. 机械科学与技术, 2013, 32(4): 475-480. |
LIAO M F, YU X, WANG S J, et al. The vibration features of a twin spool rotor system[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4): 475-480 (in Chinese). | |
35 | MA P P, ZHAI J Y, WANG Z, et al. Unbalance vibration characteristics and sensitivity analysis of the dual-rotor system in aeroengines[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020094. |
36 | HIBNER D H. Dynamic response of viscous-damped multi-shaft jet engines[J]. Journal of Aircraft, 1975, 12(4): 305-312. |
37 | GUNTER E J, BARRETT L E, ALLAIRE P E. Design of nonlinear squeeze-film dampers for aircraft engines[J]. Journal of Lubrication Technology, 1977, 99(1): 57-64. |
38 | BONELLO P, HAI P M. A receptance harmonic balance technique for the computation of the vibration of a whole aero-engine model with nonlinear bearings[J]. Journal of Sound Vibration, 2009, 324(1-2): 221-242. |
39 | 陈曦, 廖明夫, 李全坤. 带套齿联轴器的转子系统动力学特性研究[J]. 推进技术, 2015, 36(7): 1069-1077. |
CHEN X, LIAO M F, LI Q K. Dynamic characteristics of a rotor system with a spline coupling[J]. Journal of Propulsion Technology, 2015, 36(7): 1069-1077 (in Chinese). | |
40 | LU Z Y, WANG X D, HOU L, et al. Nonlinear response analysis for an aero engine dual-rotor system coupled by the inter-shaft bearing[J]. Archive of Applied Mechanics, 2019, 89(7): 1275-1288. |
41 | 邓四二, 付金辉, 王燕霜, 等. 航空发动机滚动轴承-双转子系统动态特性分析[J]. 航空动力学报, 2013, 28(1): 195-204. |
DENG S E, FU J H, WANG Y S, et al. Analysis on dynamic characteristics of aero-engine rolling bearing/dual-rotor system[J]. Journal of Aerospace Power, 2013, 28(1): 195-204 (in Chinese). | |
42 | 罗贵火, 周海仑, 王飞, 等. 含滚动轴承的同向和反向旋转双转子系统动力学响应[J]. 航空动力学报, 2012, 27(8): 1887-1894. |
LUO G H, ZHOU H L, WANG F, et al. Dynamic response of co-rotating and counter-rotating dual-rotor system supported on ball bearing[J]. Journal of Aerospace Power, 2012, 27(8): 1887-1894 (in Chinese). | |
43 | 陈果. 双转子航空发动机整机振动建模与分析[J]. 振动工程学报, 2011, 24(6): 619-632. |
CHEN G. Vibration modeling and analysis for dual-rotor aero-engine[J]. Journal of Vibration Engineering, 2011, 24(6): 619-632 (in Chinese). | |
44 | 杨喜关, 罗贵火, 温卫东, 等. 支承非线性特性对双转子系统的响应特性影响研究[J]. 振动工程学报, 2014, 27(4): 572-582. |
YANG X G, LUO G H, WEN W D, et al. Impacts of support’s nonlinear characteristics on response characteristics of dual-rotor system[J]. Journal of Vibration Engineering, 2014, 27(4): 572-582 (in Chinese). | |
45 | 张振波, 马艳红, 李骏, 等. 带有支承不同心转子系统的动力响应[J]. 航空动力学报, 2012, 27(10): 2321-2328. |
ZHANG Z B, MA Y H, LI J, et al. Dynamic response of aero-engine rotor system with bearing misalignment[J]. Journal of Aerospace Power, 2012, 27(10): 2321-2328 (in Chinese). | |
46 | LI J, HONG J, MA Y H, et al. Modelling of misaligned rotor systems in aero-engines[C]∥Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition. New York: ASME, 2012. |
47 | 张振波, 马艳红, 李骏, 等. 航空发动机支承不同心转子系统力学模型研究[J]. 工程力学, 2014, 31(7): 208-214, 228. |
ZHANG Z B, MA Y H, LI J, et al. Research on the dynamic model of aero-engine rotors with bearing misalignment[J]. Engineering Mechanics, 2014, 31(7): 208-214, 228 (in Chinese). | |
48 | REN D X, HONG J, WANG C. Research on dynamic model of rotors with bearing misalignment[J]. Applied Mechanics and Materials, 2014, 539: 3-8. |
49 | 刘永泉, 肖森, 洪杰, 等. 三支点柔性转子系统支承不同心激励特征及振动响应分析[J]. 航空学报, 2017, 38(3): 220470. |
LIU Y Q, XIAO S, HONG J, et al. Excitation characteristic and dynamic response of misalignment of flexible rotor system with three supportings[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 220470 (in Chinese). | |
50 | 吴英祥, 张亚双, 陈果. 考虑航空发动机支承不同心的整机动力学建模及分析[J]. 航空发动机, 2018, 44(5): 1-8. |
WU Y X, ZHANG Y S, CHEN G. Dynamic modeling and analysis of aeroengine with supporting non-concentricity[J]. Aeroengine, 2018, 44(5): 1-8 (in Chinese). | |
51 | 冯国全, 周柏卓, 林丽晶, 等. 内外双转子系统支撑轴承不对中分析[J]. 振动与冲击, 2012, 31(7): 142-147. |
FENG G Q, ZHOU B Z, LIN L J, et al. Misalignment analysis for support bearing in an inner-and-outer dual-rotor system[J]. Journal of Vibration and Shock, 2012, 31(7): 142-147 (in Chinese). | |
52 | 王美令. 不对中转子系统的动力学机理及其振动特性研究 [D]. 沈阳:东北大学, 2013. |
WANG M L. Dynmamics and vibration characteristics of misaligned rotor systems[D]. Shenyang: Northeastern University, 2013 (in Chinese). | |
53 | 张宏献, 黄良沛, 李学军, 等. 双转子系统内转子不同心频谱特性分析[J]. 机械科学与技术, 2021, 40(5): 701-709. |
ZHANG H X, HUANG L P, LI X J, et al. Spectrum analysis of a dual rotor bearing system under bearing elevation in inner rotor[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(5): 701-709 (in Chinese). | |
54 | 肖森, 黄光强, 赵正大, 等. 柔性转子系统支承不同心力学模型及振动响应分析[C]∥第五届中国航空科学技术大会, 2021 . |
XIAO S, HAUNG G Q, ZHAO Z D, et al. Mechanical model and dynamic response of flexible rotor system with misalignment[C]∥Proceedings of the Fifth China Aviation Science and Technology Conference, 2021 (in Chinese). | |
55 | 柏长青, 左彦飞, 耿斌斌, 等. 基于多体接触瞬态动力学支承不同心模拟分析方法[J]. 振动与冲击, 2021, 40(10): 81-88. |
BAI C Q, ZUO Y F, GENG B B, et al. Bearing misalignment simulation and analysis method based on multi-body transient contact dynamics[J]. Journal of Vibration and Shock, 2021, 40(10): 81-88 (in Chinese). | |
56 | HAN Q K, CHEN Y G, ZHANG H, et al. Vibrations of rigid rotor systems with misalignment on squirrel cage supports[J]. Journal of Vibroengineering, 2016, 18(7): 4329-4339. |
57 | WANG M L, WEN B G, HAN Q K, et al. Dynamic characteristics of a misaligned rigid rotor system with flexible supports [J]. Shock and Vibration, 2021, 2021: 8876190. |
58 | 王美令, 韩清凯, 关天民. 支点不同心转子系统振动特性试验研究[C]∥第十五届全国非线性振动暨第十二届全国非线性动力学和运动稳定性学术会议, 2015. |
WANG M L, HAN Q K, GAUN T M. Experimental study of vibration characteristics of pivot point non-centric rotor system[C]∥15th National Conference on Nonlinear Vibration and 12th National Conference on Nonlinear Dynamics and Motion Stability, 2015 (in Chinese). | |
59 | 马平平. 航空发动机双转子系统振动特性研究[D]. 大连: 大连理工大学, 2021. |
MA P P. Vibration analysis of the dual-rotor system for Aeroengine[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
60 | 刘占生, 赵广, 龙鑫. 转子系统联轴器不对中研究综述 [J]. 汽轮机技术, 2007, 49(5): 321-325. |
LIU Z S, ZHAO G, LONG X. Survey of the research on coupling with misalignment of rotary machinery[J]. Turbine Technology, 2007, 49(5): 321-325 (in Chinese). | |
61 | 王永亮, 赵广, 孙绪聪, 等. 航空花键研究综述[J]. 航空制造技术, 2017, 60(3): 91-100. |
WANG Y L, ZHAO G, SUN X C, et al. Review on research of aviation spline[J]. Aeronautical Manufacturing Technology, 2017, 60(3): 91-100 (in Chinese). | |
62 | 韩清凯, 王美令, 赵广, 等. 转子系统不对中问题的研究进展[J]. 动力学与控制学报, 2016, 14(1): 1-13. |
HAN Q K, WANG M L, ZHAO G, et al. A review of rotor systems with misalignment[J]. Journal of Dynamics and Control, 2016, 14(1): 1-13 (in Chinese). | |
63 | 张宏献, 李学军, 蒋玲莉, 等. 航空发动机双转子系统不对中研究进展[J]. 航空学报, 2019, 40(6): 022717. |
ZHANG H X, LI X J, JIANG L L, et al. A review of misalignment of aero-engine rotor system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 022717 (in Chinese). | |
64 | LEEN S B, HYDE T H, RATSIMBA C H H, et al. An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling [J]. The Journal of Strain Analysis for Engineering Design, 2002, 37(6): 565-583. |
65 | 李全坤, 廖明夫, 蒋云帆. 双转子不对中故障振动特性分析[J]. 机械科学与技术, 2014, 33(12): 1916-1920. |
LI Q K, LIAO M F, JIANG Y F. The vibration features analysis of twin spool rotor with misalignment fault[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(12): 1916-1920 (in Chinese). | |
66 | 陈果, 李兴阳. 航空发动机整机振动中的不平衡-不对中-碰摩耦合故障研究 [J]. 航空动力学报, 2009, 24(10): 2277-2284. |
CHEN G, LI X Y. Study on imbalance-misalignment-rubbing coupling faults in aero-engine vibration[J]. Journal of Aerospace Power, 2009, 24(10): 2277-2284 (in Chinese). | |
67 | 李俊慧, 马艳红, 洪杰. 转子系统套齿结构动力学设计方法研究[J]. 航空发动机, 2009, 35(4): 36-39. |
LI J H, MA Y H, HONG J. Dynamic design method of spline joint structure for rotor system[J]. Aeroengine, 2009, 35(4): 36-39 (in Chinese). | |
68 | 蒋玲莉, 陈雨蒙, 李学军, 等. 双转子系统联轴器不对中振动响应分析[J]. 机械科学与技术, 2019, 38(9): 1350-1356. |
JIANG L L, CHEN Y M, LI X J, et al. Vibration analysis of dual-rotor system with coupling misalignment[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1350-1356 (in Chinese). | |
69 | 蒋玲莉, 陈雨蒙, 赵广. 某型航空发动机不对中双转子系统动态特性对比分析[J]. 湖南科技大学学报(自然科学版), 2018, 33(1): 53-56. |
JIANG L L, CHEN Y M, ZHAO G. Comparative analysis of misalignment dynamic characteristics of an aero-engine dual rotor system[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2018, 33(1): 53-56 (in Chinese). | |
70 | 李源. 双转子系统弯扭耦合非线性振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
LI Y. Research on nonlinear vibration characteristics of double-rotor system with bending-torsional coupling[D].Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
71 | MA P P, ZHAI J Y, ZHANG H, et al. Multi-body dynamic simulation and vibration transmission characteristics of dual-rotor system for aeroengine with rubbing coupling faults [J]. Journal of Vibroengineering, 2019,21 (7): 1875-1887. |
72 | PRABITH K, PRAVEEN KRISHNA I R. Response and stability analysis of a two-spool aero-engine rotor system undergoing multi-disk rub-impact[J]. International Journal of Mechanical Sciences, 2022, 213: 106861. |
73 | 林学森, 李本威, 黄帅, 等. 带柔性静子部件的轴承共腔涡轴发动机碰摩特征[J]. 航空动力学报, 2019, 34(9): 1914-1926. |
LIN X S, LI B W, HUANG S, et al. Rub-impact characteristics of bearing co-cavity turboshaft engine with flexible static parts[J]. Journal of Aerospace Power, 2019, 34(9): 1914-1926 (in Chinese). | |
74 | 袁惠群, 贺威, 韩清凯. 发动机双转子-机匣耦合系统碰摩故障分析[J]. 航空动力学报, 2011, 26(11): 2401-2408. |
YUAN H Q, HE W, HAN Q K. Analysis on rubs of double rotor-stator coupling system[J]. Journal of Aerospace Power, 2011, 26(11): 2401-2408 (in Chinese). | |
75 | 张天程, 曹树谦, 李利青, 等. 碰摩双转子系统弯扭耦合振动分析与实验[J]. 航空动力学报, 2019, 34(3): 643-655. |
ZHANG T C, CAO S Q, LI L Q, et al. Analysis and experiment of coupled bending and torsional vibration of a rub-impact dual-rotor system[J]. Journal of Aerospace Power, 2019, 34(3): 643-655 (in Chinese). | |
76 | 罗贵火, 杨喜关, 王飞. 高维双转子系统的碰摩响应特性研究[J]. 振动工程学报, 2015, 28(1): 100-107. |
LUO G H, YANG X G, WANG F. Research for response characteristics of rub-impact high-dimensional dual-rotor system[J]. Journal of Vibration Engineering, 2015, 28(1): 100-107 (in Chinese). | |
77 | 聂日敏, 曹树谦, 郭虎伦. 航空发动机双转子系统高/低压涡轮碰摩振动分析[J]. 振动与冲击, 2021, 40(1): 243-253, 263. |
NIE R M, CAO S Q, GUO H L. Rub-impact vibration analysis of PH/LH turbines of aeroengine dual-rotor system[J]. Journal of Vibration and Shock, 2021, 40(1): 243-253, 263 (in Chinese). | |
78 | 丁小飞, 彭丹阳, 曹航, 等. 双转子涡扇发动机碰摩振动特征研究[J]. 航空发动机, 2021, 47(4): 91-97. |
DING X F, PENG D Y, CAO H, et al. Study on vibration characteristics of dual-rotor turbofan engine with rubbing[J]. Aeroengine, 2021, 47(4): 91-97 (in Chinese). | |
79 | 秦海勤, 张耀涛, 徐可君. 双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J]. 机械工程学报, 2019, 55(19): 75-83. |
QIN H Q, ZHANG Y T, XU K J. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering, 2019, 55(19): 75-83 (in Chinese). | |
80 | 陈松霆, 吴志强. 反向旋转双转子碰摩振动分析[J]. 振动与冲击, 2012, 31(23): 142-147. |
CHEN S T, WU Z Q. Rubbing vibration analysis for a counter-rotating dual-rotor system[J]. Journal of Vibration and Shock, 2012, 31(23): 142-147 (in Chinese). | |
81 | 张娅, 王维民, 姚剑飞. 双盘转子系统轴向-径向碰摩非线性动力学特性分析[J]. 振动与冲击, 2012, 31(12): 141-145. |
ZHANG Y, WANG W M, YAO J F. Nonlinear dynamic behavior of a double-disk isotropic rotor system with axial and radial rub-impacts[J]. Journal of Vibration and Shock, 2012, 31(12): 141-145 (in Chinese). | |
82 | 何田, 刘献栋, 李其汉. 一种改进的航空发动机转静件碰摩故障诊断方法[J]. 航空动力学报, 2008, 23(6): 1093-1097. |
HE T, LIU X D, LI Q H. Improved fault diagnosis method for aero engine rotor-sator rubs[J]. Journal of Aerospace Power, 2008, 23(6): 1093-1097 (in Chinese). | |
83 | 刘洋, 刘晓波, 梁珊. 基于傅里叶分解方法的航空发动机转子故障诊断[J]. 中国机械工程, 2019, 30(18): 2156-2163. |
LIU Y, LIU X B, LIANG S. Aeroengine rotor fault diagnosis based on Fourier decomposition method[J]. China Mechanical Engineering, 2019, 30(18): 2156-2163 (in Chinese). | |
84 | 边杰, 梅庆, 陈亚农, 等. 航空发动机高低压转子间碰摩故障特征提取[J]. 推进技术, 2022, 43(2): 347-354. |
BIAN J, MEI Q, CHEN Y N, et al. Feature extraction of rub impact fault between high and low pressure rotors of aero-engine[J] Journal of Propulsion Technology, 2022, 43(2): 347-354 (in Chinese). | |
85 | 陈果, 于明月, 刘永泉, 等. 基于倒频谱分析的航空发动机转静碰摩部位识别[J]. 机械工程学报, 2014, 50(7):32-38. |
CHEN G, YU M Y, LIU Y Q, et al. Identifying rotor-stator rubbing positions using the cepstrum analysis technique [J] Journal of Mechanical Engineering, 2014, 50(7):32-38 (in Chinese). | |
86 | 左红艳, 刘晓波, 洪连环. 基于双阶自适应小波聚类的复合故障诊断[J]. 计算机集成制造系统, 2017, 23(10): 2180-2191. |
ZUO H Y, LIU X B, HONG L H. Compound fault diagnosis based on two-stage adaptive wavecluster[J]. Computer Integrated Manufacturing Systems, 2017, 23(10): 2180-2191 (in Chinese). | |
87 | 张志禹, 吕延军, 张九龙. 航空发动机转子碰摩故障信号广义S变换方法[J]. 交通运输工程学报, 2007, 7(3): 25-28. |
ZHANG Z Y, LU Y J, ZHANG J L. Generalized S-transform method of rotor impact-rub fault signal of aeroengine[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 25-28 (in Chinese). | |
88 | 周海仑, 陈果, 李飞敏. 转子-滚动轴承耦合系统的转静碰摩故障分析与智能诊断[J]. 振动与冲击, 2008, 27(10): 90-94, 114, 194. |
ZHOU H L, CHEN G, LI F M. Dynamic analysis and intelligent diagnosis for rubbing fault of a rotor-ball bearing coupled system[J]. Journal of Vibration and Shock, 2008, 27(10): 90-94, 114, 194 (in Chinese). | |
89 | MADHAV S, ROY M. Failure analysis of compressor blades of aero-engine[J]. Journal of Failure Analysis and Prevention, 2022, 22(3): 968-982. |
90 | 马艳红, 梁智超, 王桂华, 等. 航空发动机叶片丢失问题研究综述[J]. 航空动力学报, 2016, 31(3): 513-526. |
MA Y H, LIANG Z C, WANG G H, et al. Review on the blade loss of aero-engine[J]. Journal of Aerospace Power, 2016, 31(3): 513-526 (in Chinese). | |
91 | SINHA S K. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads[J]. Journal of Sound Vibration, 2013, 332(9): 2253-2283. |
92 | 洪亮, 臧朝平, 李全坤, 等. 模拟转子叶片丢失后外传载荷影响特性研究[J]. 推进技术, 2023, 44(10): 176-185. |
HONG L, ZANG C P, LI Q K, et al. Effects of external load on simulated rotor blade off event[J]. Journal of Propulsion Technology, 2023, 44(10): 176-185 (in Chinese). | |
93 | 洪杰, 郝勇, 张博, 等. 叶片丢失激励下整机力学行为及其动力特性[J]. 航空发动机, 2014, 40(2): 19-23. |
HONG J, HAO Y, ZHANG B, et al. Mechanical behaviors and dynamic characteristics of turbofan engine due to fan blade off[J]. Aeroengine, 2014, 40(2): 19-23 (in Chinese). | |
94 | 洪杰, 栗天壤, 王永锋, 等. 叶片丢失激励下航空发动机柔性转子系统的动力学响应[J]. 航空动力学报, 2018, 33(2): 257-264. |
HONG J, LI T R, WANG Y F, et al. Dynamic response of the aero-engine flexible rotor system under the blade-off[J]. Journal of Aerospace Power, 2018, 33(2): 257-264 (in Chinese). | |
95 | XIE J S, LIU J, CHEN J L, et al. Blade damage monitoring method base on frequency domain statistical index of shaft’s random vibration[J]. Mechanical Systems and Signal Processing, 2022, 165: 108351. |
96 | WANG N F, LIU C, JIANG D X, et al. Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing[J]. Mechanical Systems and Signal Processing, 2019, 118: 61-77. |
97 | WANG N F, LIU C, JIANG D X. Prediction of transient vibration response of dual-rotor-blade-casing system with blade off[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5164-5176. |
98 | WANG L K, YIN Y J, WANG A L, et al. Dynamic modeling and vibration characteristics for a high-speed aero-engine rotor with blade off[J]. Applied Sciences, 2021, 11(20): 9674. |
99 | FORBES G L, RANDALL R B. Estimation of turbine blade natural frequencies from casing pressure and vibration measurements[J]. Mechanical Systems and Signal Processing, 2013, 36(2): 549-561. |
100 | LISKA J, VASICEK V, JAKL J. A novel method of impeller blade monitoring using shaft vibration signal processing[J]. Sensors, 2022, 22(13): 4932. |
101 | 党伟, 胡明辉, 江志农, 等. 燃气轮机压气机动叶片断裂故障振动特征及其诊断方法[J]. 振动与冲击, 2021, 40(10): 7-19. |
DANG W, HU M H, JIANG Z N, et al. Vibration features and diagnosis methods for rotor blade fracture in a gas turbine’s compressor[J]. Journal of Vibration and Shock, 2021, 40(10): 7-19 (in Chinese). | |
102 | 江志农, 王钟, 胡明辉, 等. 燃气轮机动叶片断裂故障振动特征及其识别方法研究[J]. 机电工程, 2021, 38(8): 935-943. |
JIANG Z N, WANG Z, HU M H, et al. Vibration feature and identification methods of gas turbine rotor blade fracture fault[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(8): 935-943 (in Chinese). | |
103 | 江志农, 党伟, 胡明辉, 等. 基于OCSVM的燃气轮机叶片断裂故障诊断方法[J]. 机械设计与制造, 2022(12): 1-5, 10. |
JIANG Z N, DANG W, HU M H, et al. Gas turbine fault diagnosis method of blade fracture based on OCSVM[J]. Machinery Design & Manufacture, 2022(12): 1-5, 10 (in Chinese). | |
104 | FENG K, XIAO Y, LI Z Z, et al. Gas turbine blade fracturing fault diagnosis based on broadband casing vibration[J]. Measurement, 2023, 214: 112718. |
105 | 单颖春, 朱梓根, 刘献栋. 某带凸肩发动机风扇叶片非线性响应及断裂故障分析[J]. 振动与冲击, 2007, 26(1): 95-99, 163. |
SHAN Y C, ZHU Z G, LIU X D. Investigation of nonlinear responses and crack fault of an engine fan blade with shrouds[J]. Journal of Vibration and Shock, 2007, 26(1): 95-99, 163 (in Chinese). | |
106 | GUBRAN A A, SINHA J K. Shaft instantaneous angular speed for blade vibration in rotating machine[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2): 47-59. |
107 | ZHANG J Q, CHEN Y G, LI N, et al. A denoising method of micro-turbine acoustic pressure signal based on CEEMDAN and improved variable step-size NLMS algorithm[J]. Machines, 2022, 10(6): 444. |
108 | ABDELRHMAN A M, LEE G, LEONG M, et al. Early rotor blade fault detection in multi-stage rotor system based on wavelet analysis[M]. 2019. |
109 | PRZYSOWA R, RUSSHARD P. Non-contact measurement of blade vibration in an axial compressor [M]. 2019. |
110 | GYEKENYESI A L S J T, BAAKLINI G. Application of vibration monitoring techniques for damage detection in rotating disks [C]∥The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2002. |
111 | ANDREW L G J T, SAWICKI G Y. Vibration based crack detection in a rotating disk:NASA/TM-2003-212624 [R]. Washington, D.C.: NASA, 2003. |
112 | LUO H G H R, HALLMAN D. Disk crack detection for seeded fault engine test:NASA/CR-2004-213069[R]. Washington, D.C.: NASA, 2004. |
113 | LEWICKI D G. TF41 engine fan disk seeded fault crack propagation test[R]. Washington, D.C.: NASA, 2003. |
114 | CHUNG J P, YOO H H. Blade fault diagnosis using Mahalanobis distance[J]. Journal of Mechanical Science and Technology, 2021, 35(4): 1377-1385. |
115 | YE S H. Research on rotating blade vibration monitoring system for aero engine[C]. 2008. |
116 | 胡伟, 王德友, 杜少辉, 等. 非接触式数字光纤叶片测振系统研究及应用[J]. 航空发动机, 2010, 36(1): 38-41. |
HU W, WANG D Y, DU S H, et al. Investigation and application of non-contact digital optical fiber rotor blade vibration measurement system[J]. Aeroengine, 2010, 36(1): 38-41 (in Chinese). | |
117 | CAO J H, YANG Z B, TIAN S H, et al. Time delay-based spectrum reconstruction for nonuniform and sub-Nyquist sampling in blade tip timing[J]. Mechanical Systems and Signal Processing, 2023, 200: 110552. |
118 | KUO Y C, HSIEH C T, YAU H T, et al. Study on unified chaotic system-based wind turbine blade fault diagnostic system[J]. International Journal of Bifurcation and Chaos, 2015, 25(3): 1550042-4144. |
119 | 李丽敏, 王仲生, 姜洪开. 基于相似性传播聚类的航空发动机突发故障诊断[J]. 振动与冲击, 2014, 33(1): 51-55. |
LI L M, WANG Z S, JIANG H K. Abrupt fault diagnosis of aero-engine based on affinity propagation clustering[J]. Journal of Vibration and Shock, 2014, 33(1): 51-55 (in Chinese). | |
120 | NGUI W K, LEONG M S, SHAPIAI M I, et al. Blade fault diagnosis using artificial neural network[J]. International Journal of Applied Engineering Research, 2017, 12(4): 519-526. |
121 | KENG N W, LEONG M S, SHAPIAI M I, et al. Blade fault localization with the use of vibration signals through artificial neural network: A data-driven approach[J]. Pertanika Journal of Science and Technology, 2022, 31(1): 51-68. |
122 | WANG M H, LU S D, HSIEH C C, et al. Fault detection of wind turbine blades using multi-channel CNN[J]. Sustainability, 2022, 14(3): 1781. |
123 | TAN C Y, NGUI W K, LEONG M S, et al. Blade fault diagnosis using empirical mode decomposition based feature extraction method[C]∥MATEC Web of Conferences, 2019. |
124 | 郑旭东, 张连祥. 航空发动机整机振动典型故障分析 [J]. 航空发动机, 2013,39 (1): 34-37. |
ZHENG X D, ZHANG L X. Typical failure analysis of aeroengine vibration[J]. Aeroengine, 2013, 39(1): 34-37 (in Chinese). | |
125 | 侯磊, 陈予恕. 非线性共振及其计算和应用[J]. 机械工程学报, 2019, 55(13): 1-12. |
HOU L, CHEN Y S. Nonlinear resonance and its calculations and applications[J]. Journal of Mechanical Engineering, 2019, 55(13): 1-12 (in Chinese). | |
126 | SPAGNOL J P, WU H, XIAO K Q. Dynamic response of a cracked rotor with an unbalance influenced breathing mechanism[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 57-68. |
127 | HOU L, CHEN Y S, LU Z Y, et al. Bifurcation analysis for 2: 1 and 3: 1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load[J]. Nonlinear Dynamics, 2015, 81(1): 531-547. |
128 | HOU L, CHEN Y S, CAO Q J, et al. Nonlinear vibration analysis of a cracked rotor-ball bearing system during flight maneuvers[J]. Mechanism and Machine Theory, 2016, 105: 515-528. |
129 | HOU L H, CHEN Y S. Super-harmonic responses analysis for a cracked rotor system considering inertial excitation[J]. SCIENCECHINA:Technological Sciences, 2015, 58(11):1924-1934. |
130 | LU Z Y, HOU L, CHEN Y S, et al. Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft[J]. Nonlinear Dynamics, 2016, 83(1): 169-185. |
131 | 牛和强. 裂纹转子—轴承系统动力学特性研究[D]. 沈阳: 东北大学, 2014. |
NIU H Q. Research on dynamic behaviors of a rotor-bearing system with crack faults[D].Shenyang: Northeastern University, 2014 (in Chinese). | |
132 | 聂日敏. 航空发动机双转子系统高/低压涡轮碰摩振动特性研究[D]. 天津: 天津大学, 2019. |
NIE R M. Vibration characteristics analysis of high/low pressure turbines rub-impact of an aeroengine dual-rotor system[D].Tianjin: Tianjin University, 2019 (in Chinese). | |
133 | 侯磊. 机动飞行环境下转子系统的非线性动力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
HOU L. Research on nonlinear dynamics of rotor systems in manuevering flight environment[D].Harbin: Harbin Institute of Technology, 2015 (in Chinese). | |
134 | HOU L, CHEN Y S, CAO Q J. Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1): 286-297. |
135 | 马会防, 张辉, 吴志青, 等. 某风扇增压级行波共振故障机理研究[J]. 振动与冲击, 2022, 41(22): 130-136. |
MA H F, ZHANG H, WU Z Q, et al. Mechanism of travelling wave resonance fault of a fan booster stage[J]. Journal of Vibration and Shock, 2022, 41(22): 130-136 (in Chinese). | |
136 | 王海霞, 袁惠群, 冯鑫. 发动机附件机匣振动分析与故障排除方法[J]. 振动 测试与诊断, 2013, 33(): 206-209, 232. |
WANG H X, YUAN H Q, FENG X. Vibration analysis and troubleshooting method of engine accessory gearbox[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(Sup 1): 206-209, 232 (in Chinese). | |
137 | 刘朋, 王黎钦, 张传伟, 等. 航空发动机主轴轴承状态监测研究现状与发展趋势[J]. 航空动力学报, 2022, 37(2): 330-343. |
LIU P, WANG L Q, ZHANG C W, et al. Research status and development trend of condition monitoring on main-shaft bearings used in aircraft engines[J]. Journal of Aerospace Power, 2022, 37(2): 330-343 (in Chinese). | |
138 | 陈果, 郝腾飞, 程小勇, 等. 基于机匣测点信号的航空发动机滚动轴承故障诊断灵敏性分析[J]. 航空动力学报, 2014, 29(12): 2874-2884. |
CHEN G, HAO T F, CHENG X Y, et al. Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J]. Journal of Aerospace Power, 2014, 29(12): 2874-2884 (in Chinese). | |
139 | ANTONI J, GRIFFATON J, ANDR'E H, et al. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine[J]. Mechanical Systems and Signal Processing, 2017, 97: 112-144. |
140 | 廖明夫, 马振国, 刘永泉, 等. 航空发动机中介轴承的故障特征与诊断方法[J]. 航空动力学报, 2013, 28(12): 2752-2758. |
LIAO M F, MA Z G, LIU Y Q, et al. Fault characteristics and diagnosis method of intershaft bearing in aero-engine[J]. Journal of Aerospace Power, 2013, 28(12): 2752-2758 (in Chinese). | |
141 | HE Y, FENG K, HU M H, et al. An MCM-enhanced compressive sensing for weak fault feature extraction of rolling element bearings under variable speeds[J]. Shock and Vibration, 2020, 2020: 1745184. |
142 | HE Y, HU M H, FENG K, et al. Bearing condition evaluation based on the shock pulse method and principal resonance analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3509212. |
143 | HE Y, HU M H, FENG K, et al. An intelligent fault diagnosis scheme using transferred samples for intershaft bearings under variable working conditions[J]. IEEE Access, 2020, 8: 203058-203069. |
144 | JIANG Z N, HU M H, FENG K, et al. A SVDD and K-means based early warning method for dual-rotor equipment under time-varying operating conditions[J]. Shock and Vibration, 2018, 2018: 5382398. |
145 | ZHANG H, CHEN X F, ZHANG X L, et al. Aero-engine bearing fault detection: A clustering low-rank approach[J]. Mechanical Systems and Signal Processing, 2020, 138: 106529. |
146 | RZADKOWSKI R, ROKICKI E, PIECHOWSKI L, et al. Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 213-227. |
147 | 陈雪峰, 王诗彬, 程礼. 航空发动机快变信号的匹配同步压缩变换研究[J]. 机械工程学报, 2019, 55(13): 13-22. |
CHEN X F, WANG S B, CHENG L. Matching synchrosqueezing transform for aero-engine’s signals with fast varying instantaneous frequency[J]. Journal of Mechanical Engineering, 2019, 55(13): 13-22 (in Chinese). | |
148 | WANG S B, CHEN X F, CAI G G, et al. Matching demodulation transform and SynchroSqueezing in time-frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(1): 69-84. |
149 | CHEN S W, AN B T, YAN R Q, et al. Instantaneous frequency band and synchrosqueezing in time-frequency analysis [J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2023, 71: 539-554. |
150 | 栾孝驰, 赵俊豪, 沙云东, 等. 基于阈值参数判决筛选的航空发动机主轴承故障提取方法[J/OL].航空动力学报,2023:1-13[2024-01-03]. . |
LUAN X C, ZHAO J H, SHA Y D, et al. Aircraft engine main bearing fault feature extraction method based on threshold parameter decision screening[J]. Journal of Aerospace Power,2023: 1-13[2024-01-03]. (in Chinese). | |
151 | WANG S B, SELESNICK I, CAI G G, et al. Nonconvex sparse regularization and convex optimization for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7332-7342. |
152 | TONG C W, WANG S B, SELESNICK I W, et al. Ridge-aware weighted sparse time-frequency representation [J]. IEEE Transactions on Signal Processing, 2021, 69: 136-149. |
153 | 林桐, 陈果, 张全德, 等.航空滚动轴承振动特征的故障灵敏度分析与融合技术[J]. 航空动力学报, 2017, 32(9): 2205-2218. |
LIN T, CHEN G, ZHANG Q D, et al. Fault sensitivity analysis and fusion technology for vibration features of aero-engine rolling bearings[J]. Journal of Aerospace Power, 2017, 32(9): 2205-2218 (in Chinese). | |
154 | MA J, ZHUO S, LI C, et al. Study on noncontact aviation bearing faults and speed monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-21. |
155 | WANG B J, ZHANG X L, SUN C, et al. A quantitative intelligent diagnosis method for early weak faults of aviation high-speed bearings[J]. ISA Transactions, 2019, 93: 370-383. |
156 | 张向阳, 陈果, 郝腾飞, 等. 基于机匣信号的滚动轴承故障卷积神经网络诊断方法[J]. 航空动力学报, 2019, 34(12): 2729-2737. |
ZHANG X Y, CHEN G, HAO T F, et al. Convolutional neural network diagnosis method of rolling bearing fault based on casing signal[J]. Journal of Aerospace Power, 2019, 34(12): 2729-2737 (in Chinese). | |
157 | LIN T, CHEN G, OUYANG W L, et al. Hyper-spherical distance discrimination: A novel data description method for aero-engine rolling bearing fault detection[J]. Mechanical Systems and Signal Processing, 2018, 109: 330-351. |
158 | LI N, LEI Y, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773. |
159 | LI N P, GEBRAEEL N, LEI Y G, et al. Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model[J]. Reliability Engineering & System Safety, 2019, 186: 88-100. |
160 | LI N P, XU P C, LEI Y G, et al. A self-data-driven method for remaining useful life prediction of wind turbines considering continuously varying speeds[J]. Mechanical Systems and Signal Processing, 2022, 165: 108315. |
161 | FENG K, LI Y, HE Y Z. Modulation signal bispectrum optimization for fault diagnosis of intershaft bearings[C]∥2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing). Piscataway: IEEE Press, 2021. |
162 | 大飞机C 919将装备具有自主知识产权的PHM系统 [EB/OL].(2016-08-05) [2024-01-19]. . |
The C 919 will be equipped with a PHM system with independent intellectual property rights[EB/OL].(2016-08-05)[2024-01-19]. (in Chinese). | |
163 | 广州航新科技公司.公开发行可转换公司债券的论证分析报告[EB/OL]. (2022-10-02) [2024-01-19]. . |
Guangzhou Hangxin Science and Technology Company. Demonstration and analysis report on public offering of convertible bonds[EB/OL]. (2022-10-02) [2024-01-19]. (in Chinese). | |
164 | SIMON D L, GARG S, HUNTER G W, et al. Sensor needs for control and health management of intelligent aircraft engines[C]∥Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air.New York:ASME, 2008. |
165 | GARG S, SCHADOW K, HORN W, et al. Sensor and actuator needs for more intelligent gas turbine engines[C]∥Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010. |
166 | BEHBAHANI A, SEMEGA K. Sensing challenges for controls and PHM in the hostile operating conditions of modern turbine engine[C]∥Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008. |
167 | 秦海勤, 徐可君, 江龙平. 某型航空发动机机载振动监测点选择[J]. 推进技术, 2007, 28(6): 697-702. |
QIN H Q, XU K J, JIANG L P. Research on distribution of airborne vibration monitoring measuring points for the aeroengine[J]. Journal of Propulsion Technology, 2007, 28(6): 697-702 (in Chinese). | |
168 | 王俨剀, 廖明夫, 丁小飞. 航空发动机故障诊断[M]. 北京: 科学出版社, 2020. |
WANG Y K, LIAO M F, DING X F. Fault diagnosis for aero-engine[M]. Beijing: Science Press, 2020 (in Chinese). | |
169 | HONG J, JIANG L M, XU X R, et al. High cycle fatigue failure with radial cracks in gears of aero-engines[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2620-2632. |
170 | HONG J, SONG Z H, MA Y H, et al. Robust design method for dynamics of high-speed rotor system with interface[C]∥International Conference on Vibration Problems. Singapore: Springer, 2021: 629-645. |
171 | 丁小飞, 廖明夫, 韩方军. 航空发动机振动突增问题分析[J]. 航空发动机, 2023, 49(2): 105-111. |
DING X F, LIAO M F, HAN F J,et al.Analysis of sudden increase of vibration in aeroengine[J]. Aeroengine, 2023, 49(2): 105-111 (in Chinese). | |
172 | 邓明, 金业壮. 航空发动机故障诊断[M]. 北京: 北京航空航天大学出版社, 2012. |
DENG M, JIN Y Z. Fault diagnosis for aero-engine[M]. Beijing: Beihang University Press, 2012 (in Chinese). | |
173 | PENG Z K, CHU F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography[J]. Mechanical Systems and Signal Processing, 18(2): 199-221. |
174 | ZHANG M, JIANG Z N, FENG K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J]. Mechanical Systems and Signal Processing, 2017, 93: 460-493. |
175 | LEI Y G, YANG B, JIANG X W, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587. |
176 | LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. |
177 | 高金吉. 航空发动机振动故障监控智能化[J]. 测控技术, 2019, 38(1): 1-4. |
GAO J J. Intelligent monitoring of aero-engine vibration faults[J]. Measurement & Control Technology, 2019, 38(1): 1-4 (in Chinese). | |
178 | 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望 [J]. 航空学报, 2011, 32(8): 1371-1391. |
CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391 (in Chinese). | |
179 | 汪才, 艾延廷, 陈仁桢, 等. 航空发动机振动传递特性研究进展 [J]. 航空发动机, 2023, 49(2): 72-88. |
WANG C, AI Y T, CHEN R Z, et al. Research progress on vibration transmission characteristics of aeroengine[J]. Aeroengine, 2023, 49(2): 72-88 (in Chinese). | |
180 | 侯兰兰. 航空发动机双转子系统振动传递及非线性动力学研究 [D].天津: 天津大学, 2021. |
HOU L L. Research on vibration transmission and nonlinear dynamics of aeroengine dual rotor system[D]. Tianjin:Tianjin University, 2021 (in Chinese). | |
181 | 林荣洲. 航空发动机整机系统振动传递特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. |
LIN R Z. Reasearch on vibration transfer characteristics of aero-engine system[D].Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
182 | DENG W K, NGUYEN K T P, MEDJAHER K, et al. Physics-informed machine learning in prognostics and health management: State of the art and challenges[J]. Applied Mathematical Modelling, 2023, 124: 325-352. |
183 | AN B T, WANG S B, ZHAO Z B, et al. Interpretable neural network via algorithm unrolling for mechanical fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3517011. |
184 | ZHAO Z, LI T, AN B, et al. Model-driven deep unrolling: Towards interpretable deep learning against noise attacks for intelligent fault diagnosis[J]. ISA transactions, 2022, 129(Pt B): 644-662. |
185 | AN B T, WANG S B, QIN F H, et al. Adversarial algorithm unrolling network for interpretable mechanical anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. |
[1] | 李博, 王潇. 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024, 45(9): 528945-528945. |
[2] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[3] | 郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航空间试验进展与展望[J]. 航空学报, 2024, 45(6): 28843-028843. |
[4] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[5] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[6] | 陈立芳, 孙亚冰, 周书华, 高强, 乔保栋, 李栋. 基于真实数据反演的风扇转子本机平衡方法[J]. 航空学报, 2024, 45(4): 628321-628321. |
[7] | 马瑞贤, 王鑫, 王开明, 李斌, 廖明夫, 王四季. 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024, 45(4): 628350-628350. |
[8] | 肖袁, 冯坤, 胡明辉, 江志农. 航空发动机转子非稳态振动分量提取方法[J]. 航空学报, 2024, 45(3): 228158-228158. |
[9] | 黄湛钧, 董鑫, 卢沐宇, 张瑞涛, 闫钊阳, 张安. 基于DRSN与电压幅值分析的航空HVDC系统逆变器故障诊断[J]. 航空学报, 2024, 45(3): 328685-328685. |
[10] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[11] | 李天晴, 王维民, 张旭龙, 王树慧, 付振宇. 基于叶尖定时的转子叶片轴向位移辨识方法[J]. 航空学报, 2024, 45(2): 228682-228682. |
[12] | 李洁, 黄文新, 蔡一鸣, 王思远, 高宇飞, 蒋雪峰. 基于DFPMM的位置传感器故障诊断与容错控制[J]. 航空学报, 2024, 45(10): 329307-329307. |
[13] | 胡应交, 徐峰, 杨志军. 航空发动机整机防结冰试验能力综述[J]. 航空学报, 2023, 44(S2): 729449-729449. |
[14] | 王禹淞, 王奕迪, 郑伟. 太阳信息辅助的脉冲相位估计方法及导航应用[J]. 航空学报, 2023, 44(S1): 727651-727651. |
[15] | 郑新前, 王钧莹, 黄维娜, 伏宇, 程荣辉, 熊洪洋. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 27099-027099. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学