1 |
IATA. Airline maintenance cost executive commtary: FY2022[R]. Montreal: International Air Transport Association, 2024.
|
2 |
黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.
|
|
HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522 (in Chinese).
|
3 |
URBAN L A. Gas turbine engine parameter interrelationships[M]. Windsor Locks: Hamilton Standard Division of United Aircraft Corporation, 1969: 4-5.
|
4 |
DANIEL K. A non-linear weighted least squares gas turbine diagnostic approach and multi-fuel performance simulation[D]. Cranfield: Cranfield University, 2011: 1-2.
|
5 |
SIMON D, SIMON D L. Aircraft turbofan engine health estimation using constrained Kalman filtering[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 323-328.
|
6 |
FU X Y, LUO H, ZHONG S S, et al. Aircraft engine fault detection based on grouped convolutional denoising autoencoders[J]. Chinese Journal of Aeronautics, 2019, 32(2): 296-307.
|
7 |
李业波, 李秋红, 黄向华, 等, 航空发动机气路部件故障融合诊断方法研究 [J]. 航空学报, 2014, 35(6): 1612-1622.
|
|
LI Y B, LI Q H, HUANG X H, et al. Research on gas fault fusion diagnosis of aero-engine component[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1612-1622 (in Chinese).
|
8 |
鲁峰, 黄金泉, 仇小杰, 等. 基于信息熵融合提取特征的发动机气路分析[J]. 仪器仪表学报, 2012, 33(1): 13-19.
|
|
LU F, HUANG J Q, QIU X J, et al. Feature extraction based on information entropy fusion for turbo-shaft engine gas-path analysis[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 13-19 (in Chinese).
|
9 |
林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.
|
|
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese).
|
10 |
陈大光. 燃气涡轮发动机的状态监控与故障诊断[J]. 航空学报, 1989,10(6): 225-236.
|
|
CHEN D G. Gas turbine engine condition monitoring and fault diagnostics[J]. Acta Aeronautica et AstronauticaSinica,1989, 10(6): 225-236 (in Chinese).
|
11 |
陈大光, 韩凤学, 唐耿林. 多状态气路分析法诊断发动机故障的分析[J]. 航空动力学报, 1994(4): 12-15.
|
|
CHEN D G, HAN F X, TANG G L. Analysis of multistate gas path analytical method in fault diagnosis for aeroengine[J]. Journal of Aerospace Power, 1994,9(4): 12-15 (in Chinese).
|
12 |
朱之丽, 孟凡涛. 模型辨识法诊断发动机故障的分析[J]. 北京航空航天大学学报, 2003, 29(5): 398-401.
|
|
ZHU Z L, MENG F T. Aircraft engine fault diagnosis research using model identification based method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5): 398-401 (in Chinese).
|
13 |
范作民, 孙春林, 林兆福. 发动机故障诊断的主因子模型[J]. 航空学报, 1993, 14(12): 588-595.
|
|
FAN Z M, SUN CL, LIN Z F. Primary factor model for jet engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(12): 588-595 (in Chinese).
|
14 |
ARETAKIS N, MATHIOUDAKIS K, STAMATIS A. Nonlinear engine component fault diagnosis from a limited number of measurements using a combinatorial approach[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3): 642-650.
|
15 |
KAMBOUKOS P, MATHIOUDAKIS K. Multipoint non-linear method for enhanced component and sensor malfunction diagnosis[C]∥Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York:ASME, 2008: 619-627.
|
16 |
GULATI A, ZEDDA M, SINGH R. Gas turbine engine and sensor multiple operating point analysis using optimization techniques[C]∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000.
|
17 |
BORGUET S, DEWALLEF P, LE’ONARD O. A way to deal with model-plant mismatch for a reliable diagnosis in transient operation[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3): 031601.
|
18 |
顾嘉辉, 黄金泉, 鲁峰. 航空发动机健康估计的神经网络修正卡尔曼滤波算法[J]. 推进技术, 2018, 39(11): 2564-2570.
|
|
GU J H, HUANG J Q, LU F. Neural network corrected Kalman filter algorithm for aero-engine health parameters estimation[J]. Journal of Propulsion Technology, 2018, 39(11): 2564-2570 (in Chinese).
|
19 |
范作明, 孙春林, 白杰. 航空发动机故障诊断导论[M]. 北京: 科学出版社, 2004: 17-18.
|
|
FAN Z M, SUN C L, BAI J. Introduction to aero-engine fault diagnosis[M]. Beijing: Science Press, 2004: 17-18 (in Chinese).
|
20 |
蒋伟. 基于指印图与气路参数偏差值的航空发动机气路性能评估[D]. 哈尔滨: 哈尔滨工业大学, 2022: 9-10.
|
|
JIANG W. Performance evaluation of aero-engine gas path based on fingerprint and gas path parameter deviation value[D]. Harbin: Harbin Institute of Technology, 2022: 9-10 (in Chinese).
|
21 |
KURZKE J. How to create a performance model of a gas turbine from a limited amount of information[C]∥Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2008: 145-153.
|
22 |
KURZKE J, HALLIWELL I. Component performance[M]∥Propulsion and Power. Cham: Springer International Publishing, 2018: 439-575.
|
23 |
GIRÃO B P. Development of a prediction model for the CFM56-7B engine[D]. Coventry: The University of Beiralnterior, 2023: 28.
|
24 |
王冉. 基于QAR的航空发动机性能发展预测研究[D]. 天津: 中国民航大学, 2020: 19-20.
|
|
WANG R. Research on aero-engine performance development prediction based on QAR[D]. Tianjin: Civil Aviation University of China, 2020: 19-20 (in Chinese).
|
25 |
黄晓光. 基于热力参数的燃气轮机故障诊断[D]. 上海: 上海交通大学, 2000: 25-27.
|
|
HUANG X G. Fault diagnosis of gas turbine based on thermal parameters [D]. Shanghai: Shanghai Jiao Tong University, 2000: 25-27 (in Chinese).
|
26 |
林海. SPEY三轴燃气轮机设计工况各种故障性能的模型[D]. 上海: 上海交通大学, 2008: 33-37.
|
|
Lin H. Model of various fault performance of SPEY three-axis gas turbine under design conditions[D]. Shanghai: Shanghai Jiao Tong University, 2008: 33-37 (in Chinese).
|