航空学报 > 2025, Vol. 46 Issue (4): 230871-230871   doi: 10.7527/S1000-6893.2024.30871

固体力学与飞行器总体设计

融合先验信息的民航发动机自适应气路故障诊断方法

郭庆1(), 刘晓阳1, 樊俊峰2, 付宇1, 左洪福3   

  1. 1.中国民航大学 航空工程学院,天津 300300
    2.中国南方航空股份有限公司工程技术分公司 动力装置部,广州 510890
    3.南京航空航天大学 民航学院,南京 210016
  • 收稿日期:2024-06-26 修回日期:2024-07-15 接受日期:2024-08-05 出版日期:2024-08-21 发布日期:2024-08-20
  • 通讯作者: 郭庆 E-mail:qguocauc@sina.com
  • 基金资助:
    国家自然科学基金(U2133202);中国民航大学中央高校基本科研项目(3122022046)

Adaptive gas path fault diagnosis method of civil aviation engine fusing prior information

Qing GUO1(), Xiaoyang LIU1, Junfeng FAN2, Yu FU1, Hongfu ZUO3   

  1. 1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Power Plant Department,Southern Airlines Engineering Technology Branch,Guangzhou 510890,China
    3.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • Received:2024-06-26 Revised:2024-07-15 Accepted:2024-08-05 Online:2024-08-21 Published:2024-08-20
  • Contact: Qing GUO E-mail:qguocauc@sina.com
  • Supported by:
    National Natural Science Foundation of China(U2133202);Civil Aviation University of China Central University Basic Research Project(3122022046)

摘要:

针对民用航空发动机传感器数量不足、难以实现有效故障诊断的问题,提出了融合先验信息的自适应气路分析模型(AGPAM-PI),提升了发动机故障诊断的准确性与效率。AGPAM-PI结合发动机指印图的先验信息和非线性气路故障诊断方法,首先通过指印图对故障信息进行有效补充,对故障因子求解范围约束限定,然后再利用非线性气路分析模型进行故障诊断。以一台在实际运营过程中发生故障的CFM56-7B发动机数据进行验证,结果表明模型对该发动机的故障进行了准确的定位并通过发动机故障诊断规则分析了发动机故障模式,证明了模型的有效性。相比传统的气路故障诊断方法,先验故障信息的引入增强了单元体故障的识别能力,提高了诊断精度。

关键词: 民航发动机, 故障诊断, 部件级建模, 信息融合, 非线性气路分析

Abstract:

To address the problem of difficulty in effective fault diagnosis for civil aviation engines due to insufficient numbers of sensors, an Adaptive Gas Path Analysis Model incorporated with Prior Information (AGPAM-PI) is proposed to enhance the accuracy and efficiency of engine fault diagnosis. The AGPAM-PI combines the prior information of the engine fingerprint and the nonlinear gas path fault diagnosis method. The fault information is firstly supplemented through the fingerprint diagram, the solution range of fault factors is constrained, and then the nonlinear gas path analysis model is used for fault diagnosis. The model is validated using the data from a CFM56-7B engine that experienced a fault during actual operation. The results show that the model accurately locates the fault of the engine and analyzes the engine fault mode through engine fault diagnosis rules, which proves the validity of the model. Compared with traditional gas path fault diagnosis methods, the introduction of prior fault information improves the ability to distinguish unit faults and enhances diagnostic accuracy.

Key words: civil aviation engine, fault diagnosis, component-level modeling, information fusion, nonlinear gas path analysis

中图分类号: