1 |
EAST P W. Fifty years of instantaneous frequency measurement[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 112-122.
|
2 |
邹喜华, 卢冰. 基于光子技术的微波频率测量研究进展[J]. 数据采集与处理, 2014, 29(6): 885-894.
|
|
ZOU X H, LU B. Advances in microwave frequency measurement using photonic[J]. Journal of Data Acquisition and Processing, 2014, 29(6): 885-894 (in Chinese).
|
3 |
吴伟仁, 黄磊, 节德刚, 等. 嫦娥二号工程X频段测控通信系统设计与试验[J]. 中国科学(信息科学), 2011, 41(10): 1171-1183.
|
|
WU W R, HUANG L, JIE D G, et al. Design and experiment of X-band TT & C system for the project of CE-2[J]. Scientia Sinica (Informationis), 2011, 41(10): 1171-1183 (in Chinese).
|
4 |
邓伏虎. 基于二维分区的深空频率捕获算法仿真及设计[D]. 成都: 电子科技大学, 2009.
|
|
DENG F H. Simulation and design of deep space frequency acquisition algorithm based on two-dimensional partition[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese).
|
5 |
Keysight. Real-Time Spectrum Analyzers (RTSA) [EB/OL]. .
|
6 |
ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711-734.
|
7 |
CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1: 319-330.
|
8 |
CHI H, ZOU X H, YAO J P. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1249-1251.
|
9 |
LI Z, WANG C, LI M, et al. Instantaneous microwave frequency measurement using a special fiber Bragg grating[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(1): 52-54.
|
10 |
FANDIÑO J S, MUÑOZ P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter[J]. Optics Letters, 2013, 38(21): 4316-4319.
|
11 |
FENG D Q, XIE H, QIAN L F, et al. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber[J]. Optics Express, 2015, 23(13): 17613-17621.
|
12 |
LIU L, JIANG F, YAN S Q, et al. Photonic measurement of microwave frequency using a silicon microdisk resonator[J]. Optics Communications, 2015, 335: 266-270.
|
13 |
PAGANI M, MORRISON B, ZHANG Y B, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica, 2015, 2(8): 751.
|
14 |
NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10): 1188-1190.
|
15 |
ZOU X H, YAO J P. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photonics Technology Letters, 2008, 20(23): 1989-1991.
|
16 |
ZHANG X M, CHI H, ZHANG X M, et al. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(6): 422-424.
|
17 |
ATTYGALLE M, HUNTER D B. Improved photonic technique for broadband radio-frequency measurement[J]. IEEE Photonics Technology Letters, 2009, 21(4): 206-208.
|
18 |
ZOU X H, PAN S L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology, 2009, 27(23): 5314-5320.
|
19 |
ZHOU J Q, FU S N, ADITYA S, et al. Instantaneous microwave frequency measurement using photonic technique[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1069-1071.
|
20 |
SHI N N, GU Y Y, HU J J, et al. Photonic approach to broadband instantaneous microwave frequency measurement with improved accuracy[J]. Optics Communications, 2014, 328: 87-90.
|
21 |
JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1): 30.
|
22 |
LI Y Q, PEI L, LI J, et al. Theory study on a range-extended and resolution-improved microwave frequency measurement[J]. Journal of Modern Optics, 2016, 63(7): 613-620.
|
23 |
EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixing[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10): 2462-2470.
|
24 |
NGUYEN L V T. Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photonics Technology Letters, 2009, 21(10): 642-644.
|
25 |
NGUYEN T A, CHAN E H W, MINASIAN R A. Photonic multiple frequency measurement using a frequency shifting recirculating delay line structure[J]. Journal of Lightwave Technology, 2014, 32(20): 3831-3838.
|
26 |
NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique[J]. Optics Letters, 2014, 39(8): 2419-2422.
|
27 |
LI R Y, CHEN H W, LEI C, et al. Optical serial coherent analyzer of radio-frequency (OSCAR)[J]. Optics Express, 2014, 22(11): 13579-13585.
|
28 |
YE C H, FU H Y, ZHU K, et al. All-optical approach to microwave frequency measurement with large spectral range and high accuracy[J]. IEEE Photonics Technology Letters, 2012, 24(7): 614-616.
|
29 |
ZHOU F, CHEN H, WANG X, et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping[J]. IEEE Photonics Journal, 2018, 10(2): 5500807.
|
30 |
WINNALL S T, LINDSAY A C. A Fabry-Perot scanning receiver for microwave signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(7): 1385-1390.
|
31 |
RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24): 3794-3796.
|
32 |
WANG X, ZHOU F, GAO D S, et al. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 172.
|
33 |
HAO T F, TANG J, LI W, et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator[J]. Optics Express, 2018, 26(26): 33582-33591.
|
34 |
HAO T F, TANG J, SHI N N, et al. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold[J]. Optics Letters, 2019, 44(12): 3062-3065.
|
35 |
WANG L, HAO T F, GUAN M Y, et al. Compact multi-tone microwave photonic frequency measurement based on a single modulator and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2022, 40(19): 6517-6522.
|
36 |
ZHENG S L, GE S X, ZHANG X M, et al. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1115-1117.
|
37 |
XIAO Y C, GUO J, WU K, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with improved measurement range[J]. Optics Express, 2013, 21(26): 31740-31750.
|
38 |
WU K, LI J Q, ZHANG Y D, et al. Multiple microwave frequencies measurement based on stimulated Brillouin scattering with ultra-wide range[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19): 1935-1940.
|
39 |
JIAO W T, YOU K, SUN J Q. Multiple microwave frequency measurement with improved resolution based on stimulated Brillouin scattering and nonlinear fitting[J]. IEEE Photonics Journal, 2019, 11(1): 5500912.
|
40 |
LIU J L, SHI T X, CHEN Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping[J]. Journal of Lightwave Technology, 2021, 39(7): 2023-2032.
|
41 |
HAO T F, YANG Y, JIN Y Q, et al. Quantum microwave photonics[J]. Journal of Lightwave Technology, 2022, 40(20): 6616-6625.
|
42 |
LI Z Y, WANG Z X, LUO H, et al. Weak RF signal detection based on single-mode optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2023, 35(6): 313-316.
|
43 |
ZHANG X, PU T, ZHENG J L, et al. Low-power RF signal detection with wideband range based on an optically injected optoelectronic oscillator[J]. Optics Letters, 2022, 47(3): 686-689.
|
44 |
WANG G Q, HAO T F, LI W, et al. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator[J]. Optics Communications, 2019, 439: 133-136.
|
45 |
MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics[J]. Nature Photonics, 2019, 13: 80-90.
|
46 |
TAO Y S, YANG F H, TAO Z H, et al. Fully on-chip microwave photonic instantaneous frequency measurement system[J]. Laser & Photonics Reviews, 2022, 16(11): 2200158.
|
47 |
YAO Y H, ZHAO Y H, WEI Y X, et al. Highly integrated dual-modality microwave frequency identification system[J]. Laser & Photonics Reviews, 2022, 16(10): 2200006.
|